Proofs of Conditional Statements

• Many theorems have the form:
 – *For all* x, $H(x) \rightarrow C(x)$

• The cube of every negative real number is negative.
 – For all x, $(x^3 < 0) \rightarrow (x < 0)$
 – Domain: set of real numbers.

• If x^2 is an odd integer, then x is also an odd integer.
 – For all x, $(x^2$ is odd) \rightarrow (x is odd)
 – Domain: set of integers.
Ways to prove conditional statements

• *Prove*: $\forall x \ H(x) \rightarrow C(x)$

• Direct proof
 – Name a generic element x in the domain that satisfies $H(x)$
 – Prove that $C(x)$ is also true

• Implicitly uses universal instantiation.
Ways to prove conditional statements

• **Prove:** \(\forall x \ H(x) \rightarrow C(x) \)
• Proof by contrapositive
 – Name a generic element \(x \) in the domain such that \(C(x) \) is false
 – Prove that \(H(x) \) is also false
 – At the beginning of the proof, state what you are assuming (\(C(x) \) is false) and state what you will prove (\(H(x) \) is false).

• **Proofs by contrapositive work because:**
 – \(\forall x \ H(x) \rightarrow C(x) \) is logically equivalent to
 \[\forall x \ \neg C(x) \rightarrow \neg H(x) \]
Direct proof example

- **Theorem**: The cube of every even integer is even.
- **Proof**:
 - Let x be an even integer.
 - We will show that x^3 is also even.
 - Then $x = 2k$ for some integer k.
 - Cube both sides of the equation to get:
 - $x^3 = (2k)^3 = 2^3k^3 = 8k^3 = 2(4k^3)$
 - $4k^3$ is an integer, so x^3 can be expressed as 2 times an integer, and therefore x^3 is even.
Direct proof example

• Theorem: The product of two rational numbers is rational.
• Proof:
 – Let x and y be rational numbers.
 – We will show that xy is also rational.
 – Then $x = \frac{a}{b}$ and $y = \frac{c}{d}$, where a, b, c, d are integers and $b \neq 0$ and $d \neq 0$.
 – Multiply x and y to get:
 • $xy = \left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \left(\frac{ac}{bd}\right)$
 – ac and bd are both integers. Also $bd \neq 0$ because $b \neq 0$ and $d \neq 0$.
 – Therefore xy is the ratio of two integers with a non-zero denominator which means that xy is rational.
Proof by contrapositive example.

• Theorem: If n is an integer and $3n+7$ is odd then n is even.

• Proof:
 – Let n be an arbitrary integer such that n is odd.
 – We will show that $3n+7$ is even.
 – $n = 2k+1$, for some integer k.
 – Plug in the expression $n=2k+1$ into $3n+7$
 • $3n+7 = 3(2k+1)+7 = 6k+3+7 = 6k+10 = 2(3k+5)$
 – Since k is an integer, then $3k+5$ is also an integer. Therefore $3n+7$ can be expressed as 2 times an integer and therefore $3n+7$ is even.
Proof by contrapositive example.

• Theorem: If x is a real number such that $3x$ irrational then x is irrational.

• Before we start:
 – Every real number is rational or irrational.
 – A real number is rational if it can not be expressed as the ratio of two integers.
Proof by contrapositive example.

• Theorem: If x is a real number such that $3x$ irrational then x is irrational.
• Proof
 – Assume that x is a real number and that x is not irrational.
 – Will show that $3x$ is rational and therefore not irrational.
 – Since x is real and not irrational, then it is rational.
 – $x = \frac{a}{b}$, where $b \neq 0$.
 – Therefore $3x = 3 \frac{a}{b} = \frac{3a}{b}$.
 – Since a is an integer $3a$, is also an integer. Furthermore $b \neq 0$. Therefore $3x$ can be expressed as the ratio of two integers with a non-zero denominator which means that $3x$ is rational.
<table>
<thead>
<tr>
<th>Idempotent laws:</th>
<th>(p \lor p \equiv p)</th>
<th>(p \land p \equiv p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associative laws:</td>
<td>((p \lor q) \lor r \equiv p \lor (q \lor r))</td>
<td>((p \land q) \land r \equiv p \land (q \land r))</td>
</tr>
<tr>
<td>Commutative laws:</td>
<td>(p \lor q \equiv q \lor p)</td>
<td>(p \land q \equiv q \land p)</td>
</tr>
<tr>
<td>Distributive laws:</td>
<td>(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r))</td>
<td>(p \land (q \lor r) \equiv (p \land q) \lor (p \land r))</td>
</tr>
<tr>
<td>Identity laws:</td>
<td>(p \lor F \equiv p)</td>
<td>(p \land F \equiv F)</td>
</tr>
<tr>
<td></td>
<td>(p \lor T \equiv T)</td>
<td>(p \land T \equiv p)</td>
</tr>
<tr>
<td>Involution law:</td>
<td>(\neg \neg p \equiv p)</td>
<td></td>
</tr>
<tr>
<td>Complement laws:</td>
<td>(p \lor \neg p \equiv T)</td>
<td>(p \land \neg p \equiv F)</td>
</tr>
<tr>
<td></td>
<td>(\neg T \equiv F)</td>
<td>(\neg F \equiv T)</td>
</tr>
<tr>
<td>De Morgan's laws:</td>
<td>(\neg (p \lor q) \equiv \neg p \land \neg q)</td>
<td>(\neg (p \land q) \equiv \neg p \lor \neg q)</td>
</tr>
<tr>
<td>Conditional identities:</td>
<td>(p \rightarrow q \equiv \neg p \lor q)</td>
<td>(p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p))</td>
</tr>
</tbody>
</table>