For the next five questions, your response will be one of the following:

A. Partial order but not a total order.
B. Partial order and a total order.
C. Strict order but not a total order.
D. Strict order and a total order.
E. Neither a partial order nor a strict order.

Select one of the five choices above that describes each of the following relations.

C. 1. The domain is $\mathbb{Z} \times \mathbb{Z}$, (a, b) is related to (c, d) if $a < c$ and $b < d$.

B. 2. The domain is the set of students on a wait list to get into a course. Student x is related to student y if student x is at least as high on the list as y (i.e., x is not lower on the list than y).

A. 3. The domain is the set of positive integers. x is related to y if there is a positive integer n such that $y = x \cdot n$.

C. 4. The domain is the set of all positive numbers. x is related to y if $\lfloor x/2 \rfloor < \lfloor y/2 \rfloor$.

E. 5. The domain is the set of all positive numbers. x is related to y if $\lfloor x/2 \rfloor \leq \lfloor y/2 \rfloor$.

The matrix below is an adjacency matrix for a graph G. The vertices are $\{1, 2, 3, 4\}$. The rows and columns of the matrix are numbered 1 through 4.

$$
\begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{bmatrix}
$$

6. What is the set of edges going into vertex 2 in G (i.e., the edges whose head is vertex 2 in G)?

A. $\{(2, 2), (3, 2)\}$
B. $\{(2, 2), (2, 3)\}$
C. $\{(1, 2), (2, 2), (3, 2)\}$
D. $\{(1, 2), (2, 2), (3, 2), (2, 3)\}$

7. What is row 2 of the adjacency matrix for G^2?

A. $\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$
B. $\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$
C. $\begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$
D. $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$

8. What is the set of edges going out of vertex 2 in G^2 (i.e., the edges whose tail is vertex 2 in G^2)?

A. $\{(1, 2), (2, 2), (3, 2)\}$
B. $\{(2, 1), (2, 2), (2, 3)\}$
C. $\{(2, 2), (2, 3)\}$
D. $\{(2, 2), (3, 2)\}$
9. In the Hasse diagram above, what are the minimal elements?
 A. \(\{h\} \)
 B. \(\{c, b\} \)
 C. \(\{e, h\} \)
 D. \(\{b, c, e, h\} \)

10. In the Hasse diagram above, what is the set of elements that are comparable to \(a \)? The set you select should include all the elements that are comparable to \(a \) and not include any elements that are not comparable to \(a \).
 A. \(\{a, d, h\} \)
 B. \(\{a, b, c, d\} \)
 C. \(\{a, b, c, d, h\} \)
 D. \(\{a, b, c, d, e, h\} \)

11. In the Hasse diagram above, what is the set of elements that are comparable to \(f \)? The set you select should include all the elements that are comparable to \(f \) and not include any elements that are not comparable to \(f \).
 A. \(\{e, f, g\} \)
 B. \(\{e, f, g\} \)
 C. \(\{c, e, f, g\} \)
 D. \(\{c, d, e, f, g\} \)

12. For the directed graph \(G \) on the right, how many edges are in \(G^4 \)?
 A. 0
 B. 2
 C. 4
 D. 10

13. For the directed graph \(G \) on the right, how many edges are going out of vertex \(C \) in \(G^\uparrow \)?
 A. 1
 B. 3
 C. 4
 D. 5

14. Which of the following is not a topological sort of the vertices in \(G \)?
 A. \(C, B, F, A, E, J, H, D \)
 B. \(B, C, F, A, J, E, H, D \)
 C. \(C, B, F, J, E, H, D, A \)
 D. \(\text{They are all topological sorts.} \)