CS 151
Midterm

Name : _____________________ , _____________________
 (Last Name) (First Name)

Student ID : _______________

Signature : ________________

Instructions:

1. Please verify that your paper contains 13 pages including this cover.
2. Write down your Student-Id on the top of each page of this quiz.
3. This exam is closed book. No notes or other materials are permitted.
4. Total credits of this midterm are 80 points.
5. To receive credit you must show your work clearly.
6. Re-grade requests will not be entertained unless you write clearly.
7. Calculators are NOT allowed.
8. If necessary, state your assumptions clearly
Q1: [Sequential Circuit Timing Analysis] [10 points]

The circuit below shows a sequential circuit using D Flip Flops, and Multiplexers. Given that $A_1, A_0,$ and S are the inputs of the circuit, and Q_1 is 0, Q_0 is 1 when time equals 0 (t_0), show the timing diagram for Q_1 and Q_0.

NOTE: You can assume that gate delay is negligible.
Q2: [ALU] [20 points]

We are going to design a 4-bit Arithmetic Unit (AU) with the following functional table:

<table>
<thead>
<tr>
<th>M1</th>
<th>M0</th>
<th>Function Name</th>
<th>F(A,B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>if(A/4==0) add B to A; else subtract B from A</td>
<td>if(A/4==0) S = A + B; else S = A - B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>if(A<B) add A to B times 8; else add A to B divided 4</td>
<td>if(A<B) S = A + (B * 8); else S = A + (B / 4)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Increment A by 4</td>
<td>S = A + 4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Add 1 to A+B * 8</td>
<td>S = A + (B * 8) + 1</td>
</tr>
</tbody>
</table>

Both A and B are 4-bit binary unsigned numbers \(a_3a_2a_1a_0\) and \(b_3b_2b_1b_0\).
M1, M0 are the control inputs to this AU. Although B is the only input register to the AL-Extender unit, if you need to, you can also connect register A to the AL-Extender.
In this question you are required to design the logic inside AL-Extender using JUST Comparators, and Multiplexers if needed.

Hint: Although the inputs and outputs are unsigned numbers, you can use 2’s complement arithmetic within the design.
Q3: [Counter Application] [15 points]

Using only a 3-bit up binary counter, you are going to design a mod-8 specific sequence whose output (denoted by MOD8) is 1 when the equals 0, otherwise it outputs a 0. The sequence is defined below in Q 3a.

any of the following components (Specify the bit widths, and name all inputs/outputs):

1) Adders
2) Shifters
3) Comparators
4) Multiplexers

Make sure you answer both parts 3a, and 3b.

3a. Using the 3-bit up binary counter, create a counter that generates the following sequence [10 points]:

2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 10 \rightarrow 12 \rightarrow 14 \rightarrow 16 \rightarrow 2 \rightarrow 4 \ldots..
3b. Using the counter designed in part 3a design a mod-8 counter whose output (denoted by MOD8) is 1 when the sequence value mod 8 equals 0, otherwise it outputs a 0. [5 points]
Q4: [RTL design] [35 points]

The following high-level state machine has the task of finding either the minimum or the maximum among an array of 128 elements depending on the mode selected (Mode = 0 = find the minimum, and Mode = 1 = find the maximum). A_Data is an 8-bit input, A_Address is an 8-bit output, and minmax_out is the final 8-bit (minimum or maximum) output value. Data and minmax are both 8-bit internal registers. All inputs/outputs are unsigned. The Start input drives the circuit to start the execution of the task. Use this state machine to answer the following questions:
4a. Design the data-path for this system. [15 points]

Please note that the initial value for the minmax register depends on the Mode, if the Mode = 0, minmax is initialized to 0, if the Mode = 1, minmax is initialized to (255).

Hint: Your minmax register will have at most 2 inputs.

You may use any of the following components:
1) Registers
2) Adders
3) Comparators
4) Multiplexers
4b. Design the interface of the system and the interface between the controller and the datapath. [5 points]
4c. Design the FSM of the controller. [15 points]

HINT: There is no timing issue for this system so you do not have to consider timing issues in designing the controller’s FSM.