Chapter 1

EBNF: A Notation to Describe Syntax

Precise language is not the problem. Clear language is the problem.
Richard Feynman

Chapter Objectives
- Learn the four control forms in EBNF
- Learn to read and understand EBNF descriptions
- Learn to prove a symbol is legal according to an EBNF description
- Learn to determine if EBNF descriptions are equivalent
- Learn to write EBNF descriptions from specifications and exemplars
- Learn the difference between syntax and semantics
- Learn the correspondence between EBNF rules and syntax charts
- Learn to understand the meaning of and use recursive EBNF rules

1.1 Introduction

EBNF is a notation for formally describing syntax: how to write the linguistic features in a language. We will study EBNF in this chapter and then use it throughout the rest of this book to describe Python’s syntax formally. But there is a more compelling reason to begin our study of programming with EBNF: it is a microcosm of programming itself.

First, the control forms in EBNF rules are strongly similar to the the basic control structures in Python: sequence; decision, repetition, and recursion; also similar is the ability to name descriptions and reuse these names to build more complex structures. There is also a strong similarity between the process of writing descriptions in EBNF and writing programs in Python: we must synthesize a candidate solution and then analyze it —to determine whether it is correct and simple. Finally, studying EBNF introduces a level of formality that we will employ throughout our study of programming and Python.

1.2 Language and Syntax

In the middle 1950s, computer scientists began to design high-level program-
manning languages and build their compilers. The first two major successes were
FORTRAN (FORmula TRANslator), developed by the IBM corporation in the
United States, and ALGOL (ALGOrithmic Language), sponsored by a consor-
tium of North American and European countries. John Backus led the effort to
develop FORTRAN. He then became a member of the ALGOL design com-
mittee, where he studied the problem of describing the syntax of these programming
languages simply and precisely.

Backus invented a notation (based on the work of logician Emil Post) that was
simple, precise, and powerful enough to describe the syntax of any program-
ming language. Using this notation, a programmer or compiler can determine
whether a program is syntactically correct: whether it adheres to the grammar
and punctuation rules of the programming language. Peter Naur, as editor
of the ALGOL report, popularized this notation by using it to describe the
complete syntax of ALGOL. In their honor, this notation is called Backus–
Naur Form (BNF). This book uses Extended Backus–Naur Form (EBNF) to
describe Python syntax, because using it results in more compact descriptions.

In a parallel development, the linguist Noam Chomsky began work on a harder
problem: describing the syntactic structure of natural languages, such as En-
glish. He developed four different notations that describe languages of increas-
ing complexity; they are numbered type 3 (least powerful) up through 0 (most
powerful) in the Chomsky hierarchy. The power of Chomsky’s type 2 notation
is equivalent to EBNF. The languages in Chomsky’s hierarchy, along with the
machines that recognize them, are studied in computer science, mathematics,
and linguistics under the topics of formal language and automata theory.

1.3 EBNF Rules and Descriptions

An EBNF description is an unordered list of EBNF rules. Each EBNF rule
has three parts: a left-hand side (LHS), a right-hand side (RHS), and the ⇐
character separating these two sides; read this symbol as “is defined as”. The
LHS is one italicized word (possibly with underscores) written in lower–case; it
names the EBNF rule. The RHS supplies a description of this name. It can
include names, characters (standing for themselves), and combinations of the
four control forms explained in Table 1.1.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Items appear left–to–right; their order is important.</th>
</tr>
</thead>
</table>
| Choice | Alternative items are separated by a | (stroke); one item is
|        | chosen from this list of alternatives; their order is unimportant. |
| Option | The optional item is enclosed between [ and ] (square–brackets); the
can be either included or discarded. |
| Repetition | The repeatable item is enclosed between { and } (curly–braces); the
can be repeated zero or more times; yes, we can chose
to repeat items zero times, a fact beginners often forget. |

EBNF rules can include these six characters with special meanings: ⇐, |, [],
{}, and }. If we want to put any of these special characters standing for themself

Backus developed a notation to describe syntax; Peter Naur then popularized its use: they are the B and N in EBNF

At the same time, linguist Noam Chomsky developed notations to describe the syntax of natural languages

EBNF descriptions comprises a list of EBNF rules of the form: LHS ⇐ RHS

Special characters standing for themselves in EBNF rules appear in boxes
in a RHS, we put it in a box: so | means alternative but 0 means the stroke character. Any other non-italicized characters that appear in a RHS stand for themselves.

1.3.1 An EBNF Description of Integers

The following EBNF rules describe how to write simple integers. Their RHS illustrates every control form available in EBNF.

EBNF Description: integer

digit ← 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer ← [+][-]digit{digit}

We can paraphrase the meanings of these rules in English.

• A digit is defined as one of the ten alternative characters 0 through 9.

• An integer is defined as a sequence of three items: an optional sign (if it is included, it must be one of the alternatives + or -), followed by any digit, followed by a repetition of zero or more digits, where each digit is independently chosen from the list of alternatives in the digit rule.

The RHS of integer combines all the control forms in EBNF: sequence, option, choice, and repetition. We will see longer, more complicated EBNF descriptions, but their rules always use just these four control forms.

To make EBNF descriptions easier to read and understand, we align their rule names, the ←, and their rule definitions. Sometimes we put extra spaces in a RHS, to make it easier to read; such spaces do not change the meaning of the rule. We can write the special character ⊔ to require a space in an EBNF rule. Although the rules in EBNF descriptions are unordered, we will adopt the convention writing them in in order of increasing complexity: the RHS of later rules often refer to the names of earlier ones, as does integer. The last EBNF rule names the main syntactic structure being described: in this case integer.

1.4 Proving Symbols Match EBNF Rules

Now that we know how to read an EBNF description, we must learn how to interpret its meaning like a language lawyer: given an EBNF description and a symbol —any sequence of characters— we must prove the symbol is legal or prove it is illegal, according to the description. Computers perform expertly as language lawyers, even on the most complicated descriptions.

To prove that a symbol is legal according to some EBNF rule, we must match all its characters with all the items in the EBNF rule, according to that rule’s description. If there is an exact match—we exhaust the characters in the symbol at the same time when exhaust the rule’s description—we classify the symbol as legal according to that EBNF description and say it matches; otherwise we classify the symbol as illegal and say it doesn’t match.

1The EBNF descriptions in this chapter are for illustration purposes only: they do not describe any of Python’s actual language features. Subsequent chapters use EBNF to describe Python.
1.4.1 Verbal Proofs (in English)

To prove in English that the symbol 7 matches the integer EBNF rule, we must start with the optional sign: the first of three items in the sequence RHS of the integer rule. In this case we discard the option, because it does not match the only character in the symbol. Next in the sequence, the symbol must match a character that is a digit; in this case, we choose the 7 alternative from the RHS of the digit rule, which matches the only character in the symbol. Finally, we must repeat digit zero or more times; in this case we use zero repetitions.

Every character in the symbol 7 has been matched against every item of the integer EBNF rule, according to its control forms: we have exhausted each. Therefore, we have proven that 7 is a legal integer according to its EBNF description.

We use a similar argument to prove in English that the symbol +142 matches the integer EBNF rule. Again we must start with the optional sign: the first of the three items in the sequence RHS of the integer rule. In this case we include this option and then choose the + alternative inside the option: we have now matched the first character in the symbol with the first item of integer’s sequence. Next in the sequence, the symbol must have a character that we can recognize as a digit; in this case we choose the 1 alternative from the RHS of the digit rule, which matches the second character in the symbol. Finally, we must repeat digit zero or more times; in this case we use two repetitions: for the first repetition we choose digit to be the 4 alternative, and for the second repetition we choose digit to be the 2 alternative. Recall that each time we encounter a digit, we are free to choose any of its alternatives.

Again, every character in the symbol +142 has been matched against every item of the integer EBNF rule, according to its control forms: we have exhausted each. Therefore, we have proven that +142 is also a legal integer.

We can easily prove that 1,024 is an illegal integer by observing that the comma appearing in this symbol does not appear in either EBNF rule; therefore, the match is guaranteed to fail: the match fails after discarding the sign option and matching the first digit. Likewise for the letter A in the symbol A15. Finally, we can prove that 15- is an illegal integer —not because it contains an illegal character, but because its structure is incorrect: in this symbol - follows the last digit, but the sequence in the RHS side of the integer rule requires that the sign precede the first digit: the match fails after discarding the sign option and matching two digits, at which point the symbol still contains the character - while all the items of the integer EBNF rule have been matched. So according to our rules for proofs, none of these symbols is a legal integer. When matching symbols as a language lawyer, we cannot appeal to intuition: we must rely solely on the EBNF description that we are matching.

2All three symbols are legal integers under some interpretation: the first uses a comma to separate the thousands digit from the hundreds, the second is a valid number written in hexadecimal (base 16), and the third is a negative number —sometimes written this way by accountants to emphasize, at the end, whether a value is a debit or credit. But according to the integer EBNF rule, none is legal.
1.4.2 Tabular Proofs

A tabular proof is a more formal demonstration that a symbol matches an EBNF description. The first line in a tabular proof is always the name of the EBNF rule that specifies the syntactic structure we are trying to match the symbol against: in this example, integer. The last line is the symbol we are matching. Each line is derived from the previous according to one of the following rules.

1. Replace a name (LHS) by its definition (RHS)
2. Choose an alternative
3. Determine whether to include or discard an option
4. Determine the number of times to repeat

Combining rules 1 and 2 (1&2) simplifies our proofs by allowing us, in a single step, to replace a left–hand side by one of the alternatives in its right–hand side. The left side of Figure 1.1 shows a tabular proof that +142 is an integer.

1.4.3 Derivation Trees

We illustrate a tabular proof more graphically by writing it as a derivation tree. The downward branches in such a tree illustrate the rules that allow us to go from one line to the next in a tabular proof. Although a derivation tree displays the same information as a tabular proof, it omits certain irrelevant details: the ordering of some decisions in the proof (e.g., which digit is replaced first). The EBNF rule appears at the root and the matching symbol appears in the leaves of a derivation tree, at the bottom when its characters are read left to right. The right side of Figure 1.1 shows a derivation tree for the tabular proof on the left, proving +142 is an integer.

Figure 1.1: A Tabular Proof and its Derivation Tree showing +142 is an integer

<table>
<thead>
<tr>
<th>Status</th>
<th>Reason (rule #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>Given</td>
</tr>
<tr>
<td>[+-]digit{digit}</td>
<td>Replace integer by RHS (1)</td>
</tr>
<tr>
<td>[+digit{digit}</td>
<td>Choose + alternative (2)</td>
</tr>
<tr>
<td>+digit{digit}</td>
<td>Include option (3)</td>
</tr>
<tr>
<td>+1{digit}</td>
<td>Replace the first digit by 1 alternative (1&amp;2)</td>
</tr>
<tr>
<td>+1digit digit</td>
<td>Use two repetitions (rule 4)</td>
</tr>
<tr>
<td>+14digit</td>
<td>Replace the first digit by 4 alternative (1&amp;2)</td>
</tr>
<tr>
<td>+142</td>
<td>Replace the first digit by 2 alternative (1&amp;2)</td>
</tr>
</tbody>
</table>

Section Review Exercises

1. Classify each of the following symbols as a legal or illegal integer. Note that part o. specifies a symbol containing no characters.
   a. +42  e. −1492  i. 2B  m. 0  q. +7
   b. +  f. 187  j. 187.0  n. forty-two  r. 1 543
   c. −0  g. drei  k. $15  o.  s. 1+1
   d. VII  h. 25¢  l. 1000  p. 555-1212  t. 0007

Answer: Only a, c, e, f, l, m, and t are legal.
2. a. Write a tabular proof that \(-1024\) is a legal integer. b. Draw a derivation tree showing 12 is a legal integer.

**Answer:** Note how the discarded \([+|\-]\) option is drawn in the derivation tree (without any choice among discarded alternatives).

<table>
<thead>
<tr>
<th>Status</th>
<th>Reason (rule #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>Given</td>
</tr>
<tr>
<td>([+</td>
<td>-]) digit{digit}</td>
</tr>
<tr>
<td>([-) digit{digit}</td>
<td>Choose (-) alternative (2)</td>
</tr>
<tr>
<td>(-digit{digit}</td>
<td>Include option (3)</td>
</tr>
<tr>
<td>(-1{digit}</td>
<td>Replace the first digit by 1 alternative (1&amp;2)</td>
</tr>
<tr>
<td>(-1digit digit digit</td>
<td>Use three repetitions (4)</td>
</tr>
<tr>
<td>(-10digit digit</td>
<td>Replace the first digit by 0 alternative (1&amp;2)</td>
</tr>
<tr>
<td>(-102digit</td>
<td>Replace the first digit by 2 alternative (1&amp;2)</td>
</tr>
<tr>
<td>(-1024</td>
<td>Replace digit by 4 alternative (1&amp;2)</td>
</tr>
</tbody>
</table>

### 1.5 Equivalent EBNF Descriptions

The following EBNF description is equivalent\(^3\) to the one presented in the previous section. Two EBNF descriptions are equivalent if they recognize exactly the same legal and illegal symbols: for every possible symbol, both classify it as legal or both classify it as illegal — they never classify symbols differently.

**EBNF Description:** integer (equivalent, in 3 rules)

\[
\begin{align*}
\text{sign} & \leftarrow [+|\-] \\
\text{digit} & \leftarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \\
\text{integer} & \leftarrow [\text{sign}]\text{digit}\{\text{digit}\}
\end{align*}
\]

This EBNF description is not identical to the first, because it defines an extra sign rule that is then used in the integer rule. But these two EBNF descriptions are equivalent, because providing a named rule for \([+|\-]\) does not change which symbols are legal. In fact, even if the names of all the rules are changed uniformly, exactly the same symbols are recognized as legal.

**EBNF Description:** \(z\) (really integer with different rule names)

\[
\begin{align*}
x & \leftarrow [+|\-] \\
y & \leftarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \\
z & \leftarrow [x]y\{y\}
\end{align*}
\]

Any symbol recognized as an integer by the previous EBNF descriptions is recognized as a \(z\) in this description, and vice-versa. Just exchange the names \(x\), \(y\), and \(z\) for sign, digit, and integer in any tabular proof or derivation tree.

Complicated EBNF descriptions are easier to read and understand if their rules are well-named, each name helping to communicate the meaning of its rule’s definition. But to a language lawyer or compiler, names — good or bad — cannot change the meaning of a rule or the classification of a symbol. Extra names do not change the meanings of EBNF descriptions; nor do different names for the rules. A symbol is a legal integer exactly when it is a legal \(z\). EBNF rules are easier to understand if they are well-named, but the names do not affect the meanings of EBNF rules.

---

\(^3\) Equivalent means “are always the same within some context”. For example, dollar bills are equivalent in their buying power. But a dollar bill has equivalent buying power to four quarters only in some contexts: when trying to buy a 75¢ item in a vending machine that requires exact change, the dollar bill does not have equivalent buying power to four quarters.
1.5.1 Incorrect integer Descriptions

This section examines two EBNF descriptions that contain interesting errors. To start, we try to simplify the integer rule by removing the digit that precedes the repetition, thinking we can always repeat one more time. The best description is the simplest one; so, if this new rule were equivalent to the previous one, we have improved the description of integer.

**EBNF Description:** integer (simplified but not equivalent)

\[
\begin{align*}
sign & \leftarrow + | - \\
digit & \leftarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \\
integer & \leftarrow [\text{sign}]\{\text{digit}\}
\end{align*}
\]

Every symbol that is a legal integer by the previous EBNF descriptions is also legal in this one: add another repetition for the first digit. For example, we can use this EBNF description to prove that +142 is an integer: include the sign option, choose the + alternative; repeat digit three times, choosing 1, 4, and 2.

But there are two simple symbols that this description recognizes as legal, which the previous descriptions classify as illegal: the one–character symbols + and – (just signs, without any following digits). The previous integer rules all require one digit followed by zero or more repetitions; but this integer rule contains just the repetition, which may be taken zero times. To prove + is a legal integer: include the sign option, choosing the + alternative; repeat digit zero times. The proof that – is legal is similar.

Also, the “empty symbol”, a corner–case that contains no characters, is recognized by this EBNF description as a legal integer: discard the sign option; repeat digit zero times. Because of these three differences, this EBNF description of integer is not equivalent to the previous ones; so which one is correct? Intuitively, an integer is required to contain at least one digit so I would judge this integer rule to be incorrect. Note that equivalence is a formal property of EBNF, but correctness requires human judgement.

Next we address, and fail to solve, the problem of describing how to write numbers with correctly embedded commas: e.g., 1,024 and other numbers where the thousands, millions, billions, ... position is followed by a comma. We can easily extend the digit rule to allow a comma as one of its alternatives: the comma character is not one of EBNF’s special control forms, so it stands for itself.

**EBNF Description:** comma_integer (attempt to allow embedded commas)

\[
\begin{align*}
sign & \leftarrow + | - \\
comma_digit & \leftarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid , \\
comma_integer & \leftarrow [\text{sign}]\text{comma_digit}\{\text{comma_digit}\}
\end{align*}
\]

Using this description, we can prove that 1,024 is a legal comma_integer: discard the sign option; chose digit to be the 1 alternative; repeat comma_digit four times, choosing first (a comma) then 0, 2, and 4. But, we can also prove that 1,,3,4 and many other symbols with incorrectly embedded commas are legal according to comma_integer. So, we cannot treat a comma as if it were just a digit; we need EBNF rules that are structurally more complicated to correctly classify exactly those symbols that have embedded commas in the correct locations. See Exercise 6 for a formal statement of this problem (and a hint towards the needed structure).
SECTION REVIEW EXERCISES

1. Are either of the following EBNF descriptions equivalent to the standard ones for integer? Justify your answers.

\[
\begin{align*}
\text{sign} & \equiv [+]|- \\
\text{digit} & \equiv 0|1|2|3|4|5|6|7|8|9 \\
\text{integer} & \equiv \text{sign digit}\{\text{digit}\}
\end{align*}
\]

**Answer:** Each is equivalent. Left: it is irrelevant whether the option brackets appear around sign in the integer rule, or around + and - in the sign rule; in either case there is a way to include or discard the sign. Right: it is irrelevant whether the mandatory digit comes before or after the repeated ones; in either case one digit is mandated and there is a way to specify one or more digits.

2. Write an EBNF description for even_integer that recognizes only even integers: e.g., -6 and 34 are legal but 3 and -23 are not legal.

**Answer:**

\[
\begin{align*}
\text{sign} & \equiv [+]|- \\
\text{even_digit} & \equiv 0|2|4|6|8 \\
\text{digit} & \equiv \text{even_digit}|1|3|5|7|9 \\
\text{even_integer} & \equiv [\text{sign}|\text{even_digit}]\{\text{digit}\}
\end{align*}
\]

3. Normalized integers have no extraneous leading zeros, and zero must be unsigned. Write an EBNF description for normalized_integer. Legal: 0, -1, and 451. Illegal: -01, 007, +0, and -0.

**Answer:**

\[
\begin{align*}
\text{sign} & \equiv [+]|- \\
\text{non_0_digit} & \equiv 1|2|3|4|5|6|7|8|9 \\
\text{digit} & \equiv \text{non_0_digit} \\
\text{normalized_integer} & \equiv 0|\text{sign}|\text{non_0_digit}\{\text{digit}\}
\end{align*}
\]

1.6 Syntax versus Semantics

EBNF descriptions specify only syntax: the form in which something is written. They do not specify semantics: the meaning of what is written. The sentence, “Colorless green ideas sleep furiously.” illustrates the difference between syntax and semantics: it is syntactically correct, because the grammar and punctuation are proper. But what does this sentence mean? How can ideas sleep? If ideas can sleep, what does it mean for them to sleep furiously? Can ideas have colors? Can ideas be both colorless and green? These questions all relate to the semantics, or meaning, of the sentence. As another example the sentence, ”The Earth is the fourth planet from the Sun” has an obvious meaning, but its meaning is contradicted by known astronomical facts.

Two semantic issues are important in programming languages:

- Can different symbols have the same meaning?
- Can one symbol have different meanings?

The first issue is easy to illustrate; the symbols we analyze is a name. Everyone has a nickname; so two names (two symbols) can refer to the same person. The second issue is a bit more subtle; here the symbol we analyze is the phrase “next
class” in a sentence. Suppose you take a course meeting Mondays, Wednesdays and Fridays. If your instructor says on Monday, “The next class is canceled.” you know not to come to class on Wednesday. Now suppose you take another course meeting every weekday. If your instructor for that course says on Monday, “The next class is canceled.” you know not to come to class on Tuesday. Finally, if it were Friday, “The next class is canceled.” has the same meaning in both courses: there is no class on Monday. So the meaning of a phrase (the symbol) in a sentence may depend on its context (what course you hear it in).

1.6.1 Semantics of the integer EBNF rule

Now we examine the semantic issues related to our EBNF description for integer. In a mathematical context, the meaning of a number is its value. In common usage, the symbols 1 and +1 both have the same value: an omitted sign is considered equivalent to a plus sign. As a more special case, the symbols 0 and +0 and −0 all have the same value: the sign of zero is irrelevant.

Generally, the symbols 000193 and 193 both have the same meaning: leading zeros do not effect a number’s value. But there are contexts where 000193 and 193 have different meanings. I once worked on a computer where each user was assigned a six–digit account number; mine was 000193. When I logged in, the computer expected me to identify myself with a six–digit account number; it accepted 000193 but rejected 193.

A final example concerns how measurements are written: although 9.0 and 9.0000 have the same value, the former may indicate the quantity was measured to only two significant digits; the latter to five.

1.6.2 Syntax and Semantics of the integer_set EBNF rule

Let us now explore the syntax and semantics of sets of integers. Such sets start and end with curly–braces, and contain zero or more integers separated by commas. The empty set {}, a singleton set {1}, and a set containing the three values {5,-2,11} are all examples of legal sets. Sets are illegal if they omit either of the matching curly–braces or commas between integers; or have adjacent commas {1,,2} or extra commas {1,2,3,} or other structural defects.

Given an EBNF description of integer, the following EBNF rules describe such an integer_set. Note that the open/close curly–braces in the integer_list rule means repetition; but the open/close curly–braces in boxes in the integer_set rule means the open/close curly–brace character, not a repetition.

**EBNF Description:**

integer_set := integer_list
integer_list := integer{,integer}
integer_list := {}
integer_set := {integer_list}

We can easily prove that the empty set is a legal integer_set: discard the integer_list option between the curly–braces. For a singleton set, we include the integer_list option, but use zero repetitions after the first integer. Figure 1.2 shows a tabular proof and its derivation tree that {5,-2,11} is a legal integer_set. We shorten this tabular proof and its derivation tree by using lemmas: we take as a lemma (without proof) that 5, −2, and 11 are each an integer; we
could fill in these details, but they would obscure the main result in the proof.

Figure 1.2: Proofs showing \{5,-2,11\} is an integer set

<table>
<thead>
<tr>
<th>Status</th>
<th>Reason (rule #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer_set</td>
<td>Given</td>
</tr>
<tr>
<td>{ [integer_list], integer }</td>
<td>Replace integer_set by its RHS (1)</td>
</tr>
<tr>
<td>{ integer_list }</td>
<td>Include option (3)</td>
</tr>
<tr>
<td>{ integer, integer, integer }</td>
<td>Use two repetitions (4)</td>
</tr>
<tr>
<td>{ 5, integer, integer }</td>
<td>Lemma: 5 is an integer</td>
</tr>
<tr>
<td>{ 5, -2, integer }</td>
<td>Lemma: -2 is an integer</td>
</tr>
<tr>
<td>{ 5, -2, 11 }</td>
<td>Lemma: 11 is an integer</td>
</tr>
</tbody>
</table>

Before finishing our discussion of the syntax of integer_set, let us re-examine the integer_list EBNF rule. It illustrates a common EBNF idiom: some number of values (here integer) separated from each other by some separator symbol (here comma). Notice in that rule the number of integer values is always one greater than the number of commas: there is one integer before the repetition; and inside the repetition there is one integer following every comma. When we study the syntax of Python, we will see many examples of this idiom.

Now we switch our focus to semantics and examine when two sets are equivalent. The rules involve duplicate values and the order of values.

- Duplicate values are irrelevant and can be removed: e.g., \{1,3,5,1,3,3,5\} is equivalent to \{1,3,5\}.
- The order of the values is irrelevant and can be rearranged: e.g., \{1,3,5\} is equivalent to \{1,5,3\} and \{3,1,5\} and all other permutations of these values.

By convention, we write sets in an ordered form, starting with the smallest value and ending with the largest, and we write each value once. Such a form is called “canonical”. It is impossible for our EBNF description to enforce these properties, which is why these rules are considered to be semantic, not syntactic.

The following EBNF rules are an equivalent description for writing integer_set. Here, the option brackets are in the integer_list rule, not the integer_set rule.

**EBNF Description:** integer_set (equivalent but more complex)

integer_list ← [integer{,integer}]

integer_set ← \{ integer_list \}

There are two stylistic reasons to prefer the original description. First, it better balances the complexity between the EBNF rules: the repetition control form is in one rule, and the option control form rule is in the other; here both control forms are in the integer_list rule. Second, the new description allows
integer list to match the empty symbol, which contains no characters; this is a bit awkward and can lead to problems if this EBNF rule is used in others.

In summary, EBNF descriptions specify syntax, not semantics. When we describe the syntax of a Python language feature in EBNF, we will describe its semantics using a mixture of English definitions and illustrations. Computer scientists are still developing formal notations that describe the semantics of programming languages in clear and precise ways. In general, form is easier to describe than meaning.

**Section Review Exercises**

1. Structured integers are unsigned and can contain embedded underscores that separate groups of digits, indicating some important structure. We can use structured integers to encode information in an easy to read form: dates 7_4_2012, phone numbers 1_800_555_1212, and credit card numbers 3141_5926_5358_9793. Underscores are legal only between digits: not as the first or last character in the symbol, and not adjacent to each other.

Write a single EBNF rule that describes structured integer, capturing exactly these requirements. Hint: reuse the digit rule and employ a variant of the idiom discussed above: a variant because there is no mandate that underscores appear between digits.

**Answer:** structured integer ⇐ digit{[ ]}digit

2. Semantically, underscores do not affect the value of a structured integer: e.g., 1_555_1212 has the same meaning as 15551212; when dialing either number, we press keys for only the characters representing a digit.

a. Find two dates that have the same meaning, when each is written as a different looking structured integer. b. Propose a new semantic requirement for writing dates that alleviates this problem.

**Answer:** a. The date December 5, 1987 is written as 12_5_1987; the date January 25, 1987 is written as 1_25_1987. Both symbols have the same meaning: the value 1251987. b. To alleviate this problem, always use two digits to specify a day, adding a leading zero if necessary. We write the first date as 12_05_1987 and the second as 1_25_1987. These structured integers have different values.

### 1.7 Syntax Charts

A syntax chart is a graphical representation of an EBNF rule. Figure 1.3 illustrates how to translate each EBNF control form into its equivalent syntax chart. In each case, we must follow the arrows from the beginning of the picture to the end, staying on a path through all the characters in the symbol.

In a sequence, we must go through each item. In a choice, we must go through one item/rung in the ladder of alternatives. In an option we must go through either the top rung including the item, or the bottom rung discarding it. Repetition is like option, but we can additionally repeat the item in the top rung; this picture is the only one with a right–to–left arrow.

We can combine these control forms to translate the RHS of any EBNF rule into its equivalent syntax chart. We can also compose related syntax charts into a larger chart with no named EBNF rules.
one big syntax chart that contains no named EBNF rules, by replacing each named LHS with the syntax chart for its RHS. Figure 1.4 shows the syntax chart equivalents of the digit and the original integer EBNF rules, and one large composed syntax chart for integer—with no other named EBNF rules.

The syntax charts in Figure 1.5 illustrate the RHS of three interesting EBNF rules. Syntax charts can help us disambiguate small EBNF rules.

The last illustration shows how the sequence and choice control forms interact: the stroke separates the first alternative (the sequence AB) from the second (just C). To describe the sequence of A followed by either B or C we must write something different: either both alternatives fully or use a second rule to "factor out" the alternatives. tail \[\equiv B \mid C\]

simple \[\leftarrow A \ B \mid A \ C\]

EBNF is a compact text–based notation; syntax charts present the same information, but in a graphical form. Which is better? For beginners, syntax charts are easier to use when proving whether symbols legal or illegal: we just follow the arrows to see if we can get from the start to the end. For more advanced students, EBNF descriptions are better: they are smaller and eventually are easier to read and understand (and computers process text more easily than pictures). Because beginning students become advanced ones, this book uses EBNF rules—not syntax charts—to describe Python’s syntax.

**Section Review Exercises**

1. a. Translate each of the following right–hand sides into its syntax chart.
   \[A \{A\} \quad \{A \mid B \mid C\} \quad \{A \mid B \mid C\}\]

b. Which symbols are legal according to the first RHS: _A_, _A_, _AAA_, _A_,

We can use two EBNF rule to factor a common tail in two alternatives.

Which is better: EBNF or syntax charts?
A_ A, A_? A? c. Which symbols are legal according to the second and third RHS: ABAAC, ABC, BA, AA, ABBA.

Answer:

b. A_ A and AA AA. c. For the second, ABAAC, AA. For the third, ABC, BA, AA,
CHAPTER 1. EBNF: A NOTATION TO DESCRIBE SYNTAX

1.8 Advanced EBNF: Recursion (optional)

This section examines two advanced concepts: recursive EBNF rules and using them to describe EBNF in EBNF. We will learn that recursion is more powerful than repetition and that we must use recursive EBNF rules to specify the structure of certain complicated symbols. In programming, recursion is a useful technique for specifying and processing complex data structures.

Recursive EBNF descriptions can contain rules that are “directly recursive” or “mutually” recursive: such rules use their names in a special way. A directly recursive EBNF rule uses its own name in its definition: the RHS of the EBNF rule refers to the name of its LHS. Let’s look at an example to see how we avoid what looks like a circular definition. The following directly recursive EBNF rule[1] is very simple: it allows symbols containing any number of A’s, which we can describe mathematically as Aⁿ, where n ≥ 0 (meaning n As, where n is greater than or equal to 0: zero As is the empty symbol).

EBNF Description: r (a sequence of As, defined recursively)

\[ r \equiv | Ar \]

The first alternative in r contains the empty symbol, which is a legal r: it is a sequence of zero As. Directly recursive EBNF rules must include at least one alternative that is not recursive, otherwise they are circular and describe only infinite-length symbols. Often there is just one non–recursive alternative, which is the empty symbol, and is written first in the EBNF rule.

The second alternative means that an A preceding anything that is a legal r: it is a sequence of zero As. Directly recursive EBNF rules must include at least one alternative that is not recursive, otherwise they are circular and describe only infinite-length symbols. So A is a legal r because it has an A preceding the empty symbol (which is a legal r); likewise AA is also a legal r, because it has an A preceding an A (which we just proved was a legal r), etc. Figure 1.6 shows a tabular proof and its derivation tree, illustrating how AAA is a legal r. Finally, if we required at least one A, this rule can be written more understandably as r ≜ A | Ar, with A (not empty) as the non–recursive alternative.

Figure 1.6: A Tabular Proof and its Derivation Tree showing AAA is an r

<table>
<thead>
<tr>
<th>Status</th>
<th>Reason (rule #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Given</td>
</tr>
<tr>
<td>Ar</td>
<td>Replace r by the second alternative in its RHS (1&amp;2)</td>
</tr>
<tr>
<td>AAr</td>
<td>Replace r by the second alternative in its RHS (1&amp;2)</td>
</tr>
<tr>
<td>AAAr</td>
<td>Replace r by the second alternative in its RHS (1&amp;2)</td>
</tr>
<tr>
<td>AAA</td>
<td>Replace r by the first (empty) alternative in it RHS (1&amp;2)</td>
</tr>
</tbody>
</table>

An equivalent description is \( r \equiv | Ar \), which is left–recursive instead of right–recursive.
The recursive EBNF rule $r$ is equivalent to the non–recursive EBNF rule $r \equiv \{A\}$, which uses repetition instead. Recursion can always replace repetition, but the converse is not true because recursion is more powerful than repetition. For example the following directly recursive EBNF description specifies that a symbol is legal if it has the same number of Bs following As: $A^nB^n$, where $n \geq 0$.

**EBNF Description:** $eq$

\[ eq \leftarrow | \ \{A\}\{B\} \]

This description cannot be written without recursion. The same symbols are all legal with the rule $eq \leftarrow \{A\}\{B\}$, but by this rule does not (and cannot) specify that only equal number of As and Bs in a symbol are legal.

We asserted above that repetition can always be replaced by recursion. We can also replace any option control form by an equivalent choice control form that also contains an empty symbol. Using both techniques, we can rewrite our original integer description—or any other EBNF rules—using only the recursion and choice control forms and the empty symbol. In fact, the original definition of BNF had only recursion and choice; EBNF (developed by Niklaus Wirth) added the option and repetition control forms. So, although EBNF has more features and therefore is harder to learn, it has no more power than BNF, but its descriptions are often smaller and easier to understand.

**EBNF Description:** integer (using BNF not EBNF)

\[
\begin{align*}
  \text{sign} & \leftarrow + | - \\
  \text{digit} & \leftarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \\
  \text{digits} & \leftarrow | \text{digit digits} \\
  \text{integer} & \leftarrow \text{sign digits}
\end{align*}
\]

Designers have to balance the complexity of learning and using a tool with the complexity building artifacts with the tool. This is a trade–off that we will revisit often when discussing features in the Python programming language.

Even recursive EBNF rules are not powerful enough to describe all simple symbols. For example, they cannot describe symbols having some number of As, followed by the same number of Bs, followed by the same number of Cs: $A^nB^nC^n$, where $n \geq 0$. To specify such a description, we need a more powerful notation: type 1 or type 0 in the Chomsky Hierarchy; programming languages like Python are type 0, the most complicated/powerful in the hierarchy. So why do we use EBNF? Because it is the simplest notation that is powerful enough to describe the syntactic structures in a typical programming language.

### 1.8.1 Describing EBNF using Recursive EBNF rules

EBNF descriptions are powerful enough to describe their own syntax. Although such an idea may seem odd at first, recall that dictionaries use combinations of English words to describe English words. The EBNF rules describing EBNF illustrate mutual recursion: although no rule is directly recursive, the RHS of $rhs$ is defined in terms of $sequence$, whose RHS is defined in terms of option and repetition, whose RHSs are defined in terms of $rhs$. Thus, these rules are

---

The EBNF rule $r$ is “tail–recursive”: the recursive reference occurs at the end of an alternative. All “tail–recursive” EBNF rules can be replaced by equivalent EBNF rules that use repetition; but not all recursive rules are tail–recursive; $eq$ isn’t.
mutually described in terms of each other.

For easier reading, these rules are grouped into three categories: character–
set related, LHS/RHS related (mutually recursive), and EBNF related. Recall
that when a boxed character appears in an EBNF rule, it stands for itself, not
its special meaning in EBNF. The empty symbol appears as an empty box.

**EBNF Description:**

<table>
<thead>
<tr>
<th>Description</th>
<th>EBNF Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>$\leftarrow \text{a</td>
</tr>
<tr>
<td>upper</td>
<td>$\leftarrow \text{A</td>
</tr>
<tr>
<td>digit</td>
<td>$\leftarrow \text{-</td>
</tr>
<tr>
<td>special</td>
<td>$\leftarrow \text{(</td>
</tr>
<tr>
<td>character</td>
<td>$\leftarrow \text{lower</td>
</tr>
<tr>
<td>empty</td>
<td>$\leftarrow \emptyset$</td>
</tr>
<tr>
<td>lhs</td>
<td>$\leftarrow \text{lower} + \text{lower}$</td>
</tr>
<tr>
<td>option</td>
<td>$\leftarrow \text{[rhs]}$</td>
</tr>
<tr>
<td>repetition</td>
<td>$\leftarrow \text{{rhs}}$</td>
</tr>
<tr>
<td>sequence</td>
<td>$\leftarrow \text{empty</td>
</tr>
<tr>
<td>rhs</td>
<td>$\leftarrow \text{sequence} + \text{sequence}$</td>
</tr>
</tbody>
</table>

**EBNF Description:**

<table>
<thead>
<tr>
<th>Rule</th>
<th>EBNF Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{ebnf} \leftarrow \text{ls}$</td>
<td>$\text{lhs} + \text{rhs}$</td>
</tr>
<tr>
<td>$\text{ebnf} \leftarrow \text{{ebnf} rule}$</td>
<td>$\text{lhs} + \text{rhs}$</td>
</tr>
</tbody>
</table>

**Section Review Exercises**

1. a. Write a tabular proof that shows $\text{AAAA BBBB}$ is a legal $\text{eq}$. b. Draw a
derivation tree showing $\text{AABB}$ is a legal $\text{eq}$.

**Answer:**

<table>
<thead>
<tr>
<th>Status</th>
<th>Reason (rule #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{eq}$</td>
<td>Given</td>
</tr>
<tr>
<td>$\text{AeqB}$</td>
<td>Replace $\text{eq}$ by the second alternative in its RHS (1&amp;2)</td>
</tr>
<tr>
<td>$\text{AeqBB}$</td>
<td>Replace $\text{eq}$ by the second alternative in its RHS (1&amp;2)</td>
</tr>
<tr>
<td>$\text{AAAeqBBB}$</td>
<td>Replace $\text{eq}$ by the second alternative in its RHS (1&amp;2)</td>
</tr>
<tr>
<td>$\text{AAAAeqBBB}$</td>
<td>Replace $\text{eq}$ by the second alternative in its RHS (1&amp;2)</td>
</tr>
<tr>
<td>$\text{AAAABBB}$</td>
<td>Replace $\text{eq}$ by the first (empty) alternative in its RHS (1&amp;2)</td>
</tr>
</tbody>
</table>

2. Replace the $\text{integer_list}$ EBNF rule by an equivalent directly recursive one.

**Answer:** $\text{integer_list} \leftarrow \text{integer | integer.integer_list}$

3. Rewrite the EBNF rule $\text{ebnf} \leftarrow \text{\{A|B|C\}}$ as an equivalent BNF description.

**Answer:**

<table>
<thead>
<tr>
<th>Description</th>
<th>EBNF Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>choice</td>
<td>$\leftarrow \text{</td>
</tr>
<tr>
<td>bnf</td>
<td>$\leftarrow \text{</td>
</tr>
</tbody>
</table>

**Chapter Summary**

This chapter examined the use of EBNF rules to describe syntax. It started by
discussing EBNF descriptions, named rules, and the control forms used in their
right–hand sides: sequence, choice, option, and repetition. We saw how to write
three different kinds of proofs to demonstrate whether or not a symbol was legal
according to an EBNF description: in English, and more formally as tabular
proofs and derivation trees. We saw various EBNF descriptions throughout the
chapter, and analyzed each according to its syntax and semantics. To be correct, EBNF descriptions must be inclusive enough to include all legal symbols, but restrictive enough to exclude all illegal symbols. Sometimes different EBNF rules are equivalent: they classify all symbols exactly the same: legal in both or illegal in both. We saw that syntax charts present exactly the same information contained in EBNF rules, but more graphically: we should be able to convert descriptions back and forth between EBNF rules and their syntax charts. Finally, this chapter discussed recursive descriptions (using direct and mutual recursion) and the latter’s use in an EBNF description of EBNF descriptions.

Chapter Exercises
1. The control forms in each of the following pairs are not equivalent. Find the simplest (shortest) symbol that is classified differently by each control form in the pair. Hint: try small combinations of A and B.
   a1. [A|B]  b1. {A | B}  c1. [A|B]
   a2. [A|B]  b2. {A} | {B}  c2. A | B

2. Simplify each of the following control forms (but preserve equivalence). For this problem, simpler means shorter or has fewer nested control forms.

3. Write an EBNF description for phone, which describes telephone numbers written according to the following specifications.
   • Normal: a three digit exchange, followed by a dash, followed by a four digit number: e.g., 555-1212
   • Long Distance: a 1, followed by a dash, followed by a three digit area code enclosed in parentheses, followed by a three digit exchange, followed by a dash, followed by a four digit number: e.g., 1-(800)555-1212
   • Interoffice: an 8 followed by a dash followed by a four digit number: e.g., 8-2404.

The description should be compact, and each rule should be well named.

4. Write an EBNF description for sci_not, numbers written in scientific notation, which scientists and engineers use to write very large and very small numbers compactly. Avogadro’s number is written 6.02252x10↑23 and read as 6.02252—called the mantissa—times 10 raised to the 23rd power—called the exponent. Likewise, the mass of an electron is written 9.11x10↑–31 and earth’s gravitational acceleration constant is written 9.8—this number is pure mantissa; it is not required to be multiplied by any power of ten. Numbers in scientific notation always contain at least one digit in the mantissa; if that digit is nonzero:
   • It may have a plus or minus sign preceding it.
   • It may be followed by a decimal point, which may be followed by more digits.
   • It may be followed by an exponent that specifies multiplication by ten raised to some non-zero unsigned or signed integer power.
The symbols 0.5, 15.2, +0.0x10↑5, 5.3x10↑02, and 5.3x10↑2.0 are all illegal in scientific notation. Hint: my solution uses a total of five EBNF rules: non_digit, digit, mantissa, exponent, and sci_not.

5. a. Write an EBNF description for list, which shows a list of Xs punctuated according to the following rule: one X by itself, two Xs separated by and, or a series of \( n \geq 3 \) Xs where the first \( n-1 \) are separated by commas, with and separating the last two. Legal: \( X; X \) and \( X; X, X \) and \( X; X, X, \) and \( X, X \) and \( X; X, X \) and \( X; X, X, X, \) and \( X; X, X, X, X \) commas missing or in other strange places.

b. Write an EBNF description for list, which shows a list of Xs punctuated according to the following rule: one X by itself, two Xs separated by and, or a series of \( n \geq 3 \) Xs where the first \( n-1 \) are ended by commas, with and appearing before the last X. Legal: \( X; X \) and \( X; X, X \) and \( X, X, \) and \( X, X, X, \) and \( X, X, X, X \) commas missing or in other strange places.

6. Write an EBNF description for comma_integer, which includes normalized unsigned or signed integers (no extraneous leading zeros) that have commas in all the correct places (separating thousands, millions, billions, etc.) and nowhere else. Legal: 0; 213; -2,048; and 1,000,000. Illegal: -0; 0,62; 0,5,16; 05,418; 54,32,12; and 5,,123. Hint: What can you say is always true in legal numbers with commas and triples of digits?

7. Using the following rules, write an EBNF description for train. A single letter stands for each car in a train: Engine, Caboose, Boxcar, Passenger car, and Dining car. There are four rules specifying how to form trains.

- One or more Engines appear at the front; one Caboose at the end.
- Boxcars always come in pairs: BB, BBBB, etc.
- There cannot be more than four Passenger cars in a series.
- One dining car must follow each series of passenger cars.

These cars cannot appear anywhere other than these locations. Here are some legal and illegal exemplars.

<table>
<thead>
<tr>
<th>Train</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Legal: the smallest train</td>
</tr>
<tr>
<td>EEPDPBBPDBBBBC</td>
<td>Legal: a train showing all the cars</td>
</tr>
<tr>
<td>EBBB</td>
<td>Illegal: no caboose (everything else OK)</td>
</tr>
<tr>
<td>EBBBC</td>
<td>Illegal: three boxcars in a row</td>
</tr>
<tr>
<td>EEPDPDBBC</td>
<td>Illegal: more than four passenger cars in a row</td>
</tr>
<tr>
<td>EEPBBC</td>
<td>Illegal: no dining car after passenger cars</td>
</tr>
<tr>
<td>EEBBCD</td>
<td>Illegal: dining car after box car</td>
</tr>
</tbody>
</table>

8. The interaction of two syntactic structures can sometimes have an unexpected problematic semantic interaction. Briefly describe a bad interaction in an integer_set that specifies values that are comma_integers.

9. A “range” is a compact way to write a sequence of integers. We will use the symbol .. to mean “up through”, so the range 2..5 denotes the values 2, 3, 4, and 5: the values 2 up through 5 inclusive at both ends. Using such a notation, we can write sets more compactly: instead of \{2, 3, 4, 5, 8, 10, 11, 12, 13, 17, 18, 19, 21\} we could write
Semantically, for any range $x..y$ the meaning of the range is $x \leq y$. The range $x..y$ is equivalent to all integers between $x$ and $y$ inclusive. By this rule, the range $x..x$ is equivalent to just the value $x$.

The range $x..y$ is equivalent to the “empty” range and contains no values.

By convention, we do not use ranges to write single values nor ranges of two values (1,2 is more compact than 1..2). With can define integer_range and use it to update our integer_set EBNF description.

**EBNF Description:** integer_set (updated to use range)

- integer_range $\leftarrow$ integer[..integer]
- integer_list $\leftarrow$ integer_range,.integer_range
- integer_set $\leftarrow$ [integer_list]

a. Given the semantics of sets of ranges, convert the following sets into canonical form, using ranges when appropriate.

- a. $\{1,5,9,3,7,11,9\}$
- b. $\{1..3,8,5..9,4\}$
- c. $\{8,1,2,3,4,5,12,13,14,10\}$
- d. $\{2..5,7..10,1\}$
- e. $\{1..3,8,2..5,12,4\}$
- f. $\{4..1,12,2,7..10,6\}$

The following EBNF description for integer-set is more compact than the previous one. But, they are not equivalent: this definition allows more sets than the previous definition. Find one of these sets.

**EBNF Description:** integer_set (more compact, but not equivalent)

- integer_list $\leftarrow$ integer{,integer[..integer]}
- integer_set $\leftarrow$ [integer_list]

10. a. Write a directly recursive EBNF rule named $mp$ that describes all symbols that have matching parentheses. Legal: (), and ()()(), and ()(()()), and ((()))(()(())())(). Illegal: (, and ()(), and ()().

b. Show a tabular proof and its derivation tree proving ()(()()) is legal.

11. I once saw a bumper sticker that said, “Sucks Syntax”. What is the joke?