Machine Learning – Classifiers and Boosting

Reading

Ch 18.6-18.12, 20.1-20.3.2
Outline

• Different types of learning problems

• Different types of learning algorithms

• Supervised learning
 – Decision trees
 – Naïve Bayes
 – Perceptrons, Multi-layer Neural Networks
 – Boosting

• Applications: learning to detect faces in images
You will be expected to know

- Classifiers:
 - Decision trees
 - K-nearest neighbors
 - Naïve Bayes
 - Perceptrons, Support vector Machines (SVMs), Neural Networks

- Decision Boundaries for various classifiers
 - What can they represent conveniently? What not?
Inductive learning

• Let \mathbf{x} represent the input vector of attributes
 – x_j is the jth component of the vector \mathbf{x}
 – x_j is the value of the jth attribute, $j = 1, \ldots, d$

• Let $f(\mathbf{x})$ represent the value of the target variable for \mathbf{x}
 – The implicit mapping from \mathbf{x} to $f(\mathbf{x})$ is unknown to us
 – We just have training data pairs, $D = \{\mathbf{x}, f(\mathbf{x})\}$ available

• We want to learn a mapping from \mathbf{x} to f, i.e.,
 $h(\mathbf{x}; \theta)$ is “close” to $f(x)$ for all training data points \mathbf{x}
 θ are the parameters of our predictor $h(\mathbf{..})$

• Examples:
 – $h(\mathbf{x}; \theta) = \text{sign}(w_1x_1 + w_2x_2 + w_3)$
 – $h_k(\mathbf{x}) = (x_1 \text{ OR } x_2) \text{ AND } (x_3 \text{ OR } \text{NOT}(x_4))$
Training Data for Supervised Learning

<table>
<thead>
<tr>
<th>Example</th>
<th>Attrs</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1)</td>
<td>T F F T Some $$$ F T</td>
<td>French 0–10 T</td>
</tr>
<tr>
<td>(X_2)</td>
<td>T F F T Full $ F F</td>
<td>Thai 30–60 F</td>
</tr>
<tr>
<td>(X_3)</td>
<td>F T F F Some $ F F</td>
<td>Burger 0–10 T</td>
</tr>
<tr>
<td>(X_4)</td>
<td>T F T T Full $ F F</td>
<td>Thai 10–30 T</td>
</tr>
<tr>
<td>(X_5)</td>
<td>T F T F Full $$$ F T</td>
<td>French >60 F</td>
</tr>
<tr>
<td>(X_6)</td>
<td>F T F T Some $$ T T</td>
<td>Italian 0–10 T</td>
</tr>
<tr>
<td>(X_7)</td>
<td>F T F F None $ T F</td>
<td>Burger 0–10 F</td>
</tr>
<tr>
<td>(X_8)</td>
<td>F F F T Some $$ T T</td>
<td>Thai 0–10 T</td>
</tr>
<tr>
<td>(X_9)</td>
<td>F T T F Full $ T F</td>
<td>Burger >60 F</td>
</tr>
<tr>
<td>(X_{10})</td>
<td>T T T T Full $$$ F T</td>
<td>Italian 10–30 F</td>
</tr>
<tr>
<td>(X_{11})</td>
<td>F F F F None $ F F</td>
<td>Thai 0–10 F</td>
</tr>
<tr>
<td>(X_{12})</td>
<td>T T T T Full $ F F</td>
<td>Burger 30–60 T</td>
</tr>
</tbody>
</table>
True Tree (left) versus Learned Tree (right)
Classification Problem with Overlap
Decision Boundaries

Decision Boundary

Decision Region 1

Decision Region 2
Classification in Euclidean Space

• A classifier is a partition of the space x into disjoint decision regions
 – Each region has a label attached
 – Regions with the same label need not be contiguous
 – For a new test point, find what decision region it is in, and predict the corresponding label

• Decision boundaries = boundaries between decision regions
 – The “dual representation” of decision regions

• We can characterize a classifier by the equations for its decision boundaries

• Learning a classifier \Leftrightarrow searching for the decision boundaries that optimize our objective function
Example: Decision Trees

- When applied to real-valued attributes, decision trees produce “axis-parallel” linear decision boundaries.

- Each internal node is a binary threshold of the form $x_j > t$?

 converts each real-valued feature into a binary one

 requires evaluation of N-1 possible threshold locations for N data points, for each real-valued attribute, for each internal node.
Decision Tree Example
Decision Tree Example

Decision Tree:
- Split on Income > t1
- Further splitting indicated by "??"
Decision Tree Example

- Income > t1
- Debt > t2
- ??
Decision Tree Example

- Income > t1
- Debt > t2
- Income > t3
Decision Tree Example

Note: tree boundaries are linear and axis-parallel
A Simple Classifier: Minimum Distance Classifier

• Training
 - Separate training vectors by class
 - Compute the mean for each class, μ_k, $k = 1, \ldots, m$

• Prediction
 - Compute the closest mean to a test vector x' (using Euclidean distance)
 - Predict the corresponding class

• In the 2-class case, the decision boundary is defined by the locus of the hyperplane that is halfway between the 2 means and is orthogonal to the line connecting them

• This is a very simple-minded classifier – easy to think of cases where it will not work very well
Minimum Distance Classifier
Another Example: Nearest Neighbor Classifier

- The nearest-neighbor classifier
 - Given a test point \(x' \), compute the distance between \(x' \) and each input data point
 - Find the closest neighbor in the training data
 - Assign \(x' \) the class label of this neighbor
 - (sort of generalizes minimum distance classifier to exemplars)

- If Euclidean distance is used as the distance measure (the most common choice), the nearest neighbor classifier results in piecewise linear decision boundaries

- Many extensions
 - e.g., kNN, vote based on k-nearest neighbors
 - \(k \) can be chosen by cross-validation
Boundary? Points that are equidistant between points of class 1 and 2
Note: locally the boundary is linear
Finding the Decision Boundaries
Finding the Decision Boundaries

Feature 2

Feature 1
Finding the Decision Boundaries

Feature 2

Feature 1
Overall Boundary = Piecewise Linear

Decision Region for Class 1

Decision Region for Class 2

Feature 1

Feature 2
Nearest-Neighbor Boundaries on this data set?
kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k “simplifies” decision boundary
 - Majority voting means less emphasis on individual points

$K = 1$

$K = 3$
kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k “simplifies” decision boundary
 - Majority voting means less emphasis on individual points

$K = 5$ \hspace{2cm} $K = 7$
kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points

- True ("best") decision boundary
 - In this case is linear
 - Compared to kNN: not bad!

$K = 25$
The kNN Classifier

• The kNN classifier often works very well.

• Easy to implement.

• Easy choice if characteristics of your problem are unknown.

• Can be sensitive to the choice of distance metric.
 – Often normalize feature axis values, e.g., z-score or [0, 1]
 – Categorical feature axes are difficult, e.g., Color as Red/Blue/Green

• Can encounter problems with sparse training data.

• Can encounter problems in very high dimensional spaces.
 – Most points are corners.
 – Most points are at the edge of the space.
 – Most points are neighbors of most other points.
Linear Classifiers

- Linear classifier \iff single linear decision boundary (for 2-class case)

- We can always represent a linear decision boundary by a linear equation:
 \[w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = \sum w_j x_j = w^T x = 0 \]

- In d dimensions, this defines a (d-1) dimensional hyperplane
 - d=3, we get a plane; d=2, we get a line

- For prediction we simply see if $\sum w_j x_j > 0$

- The w_i are the weights (parameters)
 - Learning consists of searching in the d-dimensional weight space for the set of weights (the linear boundary) that minimizes an error measure
 - A threshold can be introduced by a “dummy” feature that is always one; its weight corresponds to (the negative of) the threshold

- Note that a minimum distance classifier is a special (restricted) case of a linear classifier
A Possible Decision Boundary
Another Possible Decision Boundary
Minimum Error
Decision Boundary
The Perceptron Classifier
(pages 729-731 in text)

• The perceptron classifier is just another name for a linear classifier for 2-class data, i.e.,

\[
\text{output}(x) = \text{sign} \left(\sum w_j x_j \right)
\]

• Loosely motivated by a simple model of how neurons fire

• For mathematical convenience, class labels are +1 for one class and -1 for the other

• Two major types of algorithms for training perceptrons
 – Objective function = classification accuracy (“error correcting”)
 – Objective function = squared error (use gradient descent)

 – Gradient descent is generally faster and more efficient – but there is a problem! No gradient!
Two different types of perceptron output

x-axis below is \(f(x) = f \) = weighted sum of inputs
y-axis is the perceptron output

Thresholded output (step function),
takes values +1 or -1

Sigmoid output, takes real values between -1 and +1

The sigmoid is in effect an approximation to the threshold function above, but has a gradient that we can use for learning

- Sigmoid function is defined as
 \[
 \sigma[f] = \left[\frac{2}{1 + \exp[-f]} \right] - 1
 \]

- Derivative of sigmoid
 \[
 \frac{\partial \sigma}{\partial f}[f] = 0.5 \times (\sigma[f]+1) \times (1-\sigma[f])
 \]
Squared Error for Perceptron with Sigmoidal Output

- Squared error = $E[w] = \sum_i \left[\sigma(f[x(i)]) - y(i) \right]^2$

 where $x(i)$ is the ith input vector in the training data, $i=1,..N$
 $y(i)$ is the ith target value (-1 or 1)

 $f[x(i)] = \sum w_j x_j$ is the weighted sum of inputs
 $\sigma(f[x(i)])$ is the sigmoid of the weighted sum

- Note that everything is fixed (once we have the training data) except for the weights w

- So we want to minimize $E[w]$ as a function of w
Gradient Descent Learning of Weights

Gradient Descent Rule:

\[\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} - \eta \Delta (\mathbf{E}[\mathbf{w}]) \]

where

\(\Delta (\mathbf{E}[\mathbf{w}]) \) is the gradient of the error function \(\mathbf{E} \) wrt weights, and

\(\eta \) is the learning rate (small, positive)

Notes:

1. This moves us downhill in direction \(\Delta (\mathbf{E}[\mathbf{w}]) \) (steepest downhill)

2. How far we go is determined by the value of \(\eta \)
Gradient Descent Update Equation

- From basic calculus, for perceptron with sigmoid, and squared error objective function, gradient for a single input $x(i)$ is

$$\Delta (E[w]) = - (y(i) - \sigma[f(i)]) \partial\sigma[f(i)] x_j(i)$$

- Gradient descent weight update rule:

$$w_j = w_j + \eta (y(i) - \sigma[f(i)]) \partial\sigma[f(i)] x_j(i)$$

- can rewrite as:

$$w_j = w_j + \eta \times \text{error} \times c \times x_j(i)$$
Pseudo-code for Perceptron Training

Initialize each \(w_j \) (e.g., randomly)

While (termination condition not satisfied)
 for \(i = 1: N \) % loop over data points (an iteration)
 for \(j = 1 : d \) % loop over weights
 \[\text{deltaw}_j = \eta \left(y(i) - \sigma[f(i)] \right) \partial \sigma[f(i)] x_j(i) \]
 \[w_j = w_j + \text{deltaw}_j \]
 end
 calculate termination condition
end

- Inputs: \(N \) features, \(N \) targets (class labels), learning rate \(\eta \)
- Outputs: a set of learned weights
Comments on Perceptron Learning

• Iteration = one pass through all of the data

• Algorithm presented = incremental gradient descent
 – Weights are updated after visiting each input example
 – Alternatives
 • Batch: update weights after each iteration (typically slower)
 • Stochastic: randomly select examples and then do weight updates

• A similar iterative algorithm learns weights for thresholded output (step function) perceptrons

• Rate of convergence
 – $E[w]$ is convex as a function of w, so no local minima
 – So convergence is guaranteed as long as learning rate is small enough
 • But if we make it too small, learning will be *very* slow
 – But if learning rate is too large, we move further, but can overshoot the solution and oscillate, and not converge at all
Support Vector Machines (SVM): “Modern perceptrons” (section 18.9, R&N)

• A modern linear separator classifier
 – Essentially, a perceptron with a few extra wrinkles

• Constructs a “maximum margin separator”
 – A linear decision boundary with the largest possible distance from the decision boundary to the example points it separates
 – “Margin” = Distance from decision boundary to closest example
 – The “maximum margin” helps SVMs to generalize well

• Can embed the data in a non-linear higher dimension space
 – Constructs a linear separating hyperplane in that space
 • This can be a non-linear boundary in the original space
 – Algorithmic advantages and simplicity of linear classifiers
 – Representational advantages of non-linear decision boundaries

• Currently most popular “off-the shelf” supervised classifier.
Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

- What if we took K perceptrons and trained them in parallel and then took a weighted sum of their sigmoidal outputs?
 - This is a multi-layer neural network with a single “hidden” layer (the outputs of the first set of perceptrons)
 - If we train them jointly in parallel, then intuitively different perceptrons could learn different parts of the solution
 - They define different local decision boundaries in the input space
- What if we hooked them up into a general Directed Acyclic Graph?
 - Can create simple “neural circuits” (but no feedback; not fully general)
 - Often called neural networks with hidden units

- How would we train such a model?
 - Backpropagation algorithm = clever way to do gradient descent
 - Bad news: many local minima and many parameters
 - training is hard and slow
 - Good news: can learn general non-linear decision boundaries
 - Generated much excitement in AI in the late 1980’s and 1990’s
 - Techniques like boosting, support vector machines, are often preferred
Naïve Bayes Model

Bayes Rule: $P(C | X_1, \ldots X_n)$ is proportional to $P(C) \prod_i P(X_i | C)$ [note: denominator $P(X_1, \ldots X_n)$ is constant for all classes, may be ignored.]

Features X_i are conditionally independent given the class variable C
- choose the class value c_i with the highest $P(c_i | x_1, \ldots, x_n)$
- simple to implement, often works very well
- e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities $P(X_i | C)$ can easily be estimated from labeled data
- Problem: Need to avoid zeroes, e.g., from limited training data
- Solutions: Pseudo-counts, beta[a,b] distribution, etc.
Naïve Bayes Model (2)

\[P(C | X_1, \ldots X_n) = \alpha \prod P(X_i | C) P(C) \]

Probabilities \(P(C) \) and \(P(X_i | C) \) can easily be estimated from labeled data

\[P(C = c_j) \approx \frac{\#(\text{Examples with class label } c_j)}{\#(\text{Examples})} \]

\[P(X_i = x_{ik} | C = c_j) \approx \frac{\#(\text{Examples with } X_i \text{ value } x_{ik} \text{ and class label } c_j)}{\#(\text{Examples with class label } c_j)} \]

Usually easiest to work with logs

\[
\log [P(C | X_1, \ldots X_n)] \\
= \log \alpha + \sum [\log P(X_i | C) + \log P(C)]
\]

DANGER: Suppose ZERO examples with \(X_i \) value \(x_{ik} \) and class label \(c_j \) ?
An unseen example with \(X_i \) value \(x_{ik} \) will NEVER predict class label \(c_j \) !

Practical solutions: Pseudocounts, e.g., add 1 to every \#(), etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.
Classifier Bias — Decision Tree or Linear Perceptron?
Summary

• Learning
 – Given a training data set, a class of models, and an error function, this is essentially a search or optimization problem

• Different approaches to learning
 – Divide-and-conquer: decision trees
 – Global decision boundary learning: perceptrons
 – Constructing classifiers incrementally: boosting

• Learning to recognize faces
 – Viola-Jones algorithm: state-of-the-art face detector, entirely learned from data, using boosting + decision-stumps