Knowledge Representation using First-Order Logic (Part II)

Reading: Chapter 8, 9.1-9.2
First lecture slides read: 8.1-8.2
Second lecture slides read: 8.3-8.4
Third lecture slides read: Chapter 9.1-9.2
(lecture slides spread across two class sessions)

(Please read lecture topic material before and after each lecture on that topic)
Outline

- Review: Follows, Entails, Derives
 - Follows: “Is it the case?”
 - Entails: “Is it true?”
 - Derives: “Is it provable?”
- Semantics of FOL (FOPC)
- FOL can be TOO expressive, can offer TOO MANY choices
 - Likely confusion, especially for teams of Knowledge Engineers
 - Different team members can make different representation choices
 - E.g., represent “Ball43 is Red.” as:
 - a predicate (= verb)? E.g., “Red(Ball43)” ?
 - an object (= noun)? E.g., “Red = Color(Ball43)” ?
 - a property (= adjective)? E.g., “HasProperty(Ball43, Red)” ?
 - SOLUTION: An upon-agreed ontology that settles these questions
 - Ontology = what exists in the world & how it is represented
 - The Knowledge Engineering teams agrees upon an ontology BEFORE they begin encoding knowledge
FOL (or FOPC) Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?
Objects --- with their relations, functions, predicates, properties, and general rules.
If KB is true in the real world, then any sentence α entailed by KB and any sentence α derived from KB by a sound inference procedure is also true in the real world.
Schematic Example: Follows, Entails, and Derives

Inference

"Mary is Sue’s sister and Amy is Sue’s daughter."

"An aunt is a sister of a parent."

Derives

"Mary is Amy’s aunt."

Entails

"An aunt is a sister of a parent."

Follows

"Mary is Sue’s sister and Amy is Sue’s daughter."

World

Mary Sister Sue Daughter Amy Mary Aunt Amy
Review: Models (and in FOL, Interpretations)

- Models are formal worlds in which truth can be evaluated

- We say m is a model of a sentence α if α is true in m

- $M(\alpha)$ is the set of all models of α

- Then $KB \models \alpha$ iff $M(KB) \subseteq M(\alpha)$
 - E.g. $KB, = \text{“Mary is Sue’s sister and Amy is Sue’s daughter.”}$
 - $\alpha = \text{“Mary is Amy’s aunt.”}$

- Think of KB and α as constraints, and of models m as possible states.
- $M(KB)$ are the solutions to KB and $M(\alpha)$ the solutions to α.
- Then, $KB \models \alpha$, i.e., $\models (KB \Rightarrow \alpha)$, when all solutions to KB are also solutions to α.
• $KB =$ all possible wumpus-worlds consistent with the observations and the “physics” of the Wumpus world.
\(\alpha_1 = "[1,2] \text{ is safe}\), \(KB \models \alpha_1\), proved by model checking.

Every model that makes \(KB\) true also makes \(\alpha_1\) true.
Semantics: Worlds

- The world consists of objects that have properties.
 - There are relations and functions between these objects.
 - Objects in the world, individuals: people, houses, numbers, colors, baseball games, wars, centuries
 - Clock A, John, 7, the-house in the corner, Tel-Aviv, Ball43
 - Functions on individuals:
 - father-of, best friend, third inning of, one more than
 - Relations:
 - brother-of, bigger than, inside, part-of, has color, occurred after
 - Properties (a relation of arity 1):
 - red, round, bogus, prime, multistoried, beautiful
Semantics: Interpretation

• An interpretation of a sentence (wff) is an assignment that maps
 – Object constant symbols to objects in the world,
 – n-ary function symbols to n-ary functions in the world,
 – n-ary relation symbols to n-ary relations in the world

• Given an interpretation, an atomic sentence has the value “true” if it denotes a relation that holds for those individuals denoted in the terms. Otherwise it has the value “false.”
 – Example: Kinship world:
 • Symbols = Ann, Bill, Sue, Married, Parent, Child, Sibling, ...
 – World consists of individuals in relations:
 • Married(Ann,Bill) is false, Parent(Bill,Sue) is true, ...
Truth in first-order logic

- Sentences are true with respect to a model and an interpretation.
- Model contains objects (domain elements) and relations among them.
- Interpretation specifies referents for:
 - constant symbols → objects
 - predicate symbols → relations
 - function symbols → functional relations
- An atomic sentence $\text{predicate}(\text{term}_1, \ldots, \text{term}_n)$ is true iff the objects referred to by $\text{term}_1, \ldots, \text{term}_n$ are in the relation referred to by predicate.
Semantics: Models

- An interpretation satisfies a wff (sentence) if the wff has the value “true” under the interpretation.
- Model: A domain and an interpretation that satisfies a wff is a model of that wff
- Validity: Any wff that has the value “true” under all interpretations is valid
- Any wff that does not have a model is inconsistent or unsatisfiable
- If a wff w has a value true under all the models of a set of sentences KB then KB logically entails w
Models for FOL: Example
Syntactic Ambiguity

- FOPC provides many ways to represent the same thing.
 - E.g., “Ball-5 is red.”
 - HasColor(Ball-5, Red)
 - Ball-5 and Red are objects related by HasColor.
 - Red(Ball-5)
 - Red is a unary predicate applied to the Ball-5 object.
 - HasProperty(Ball-5, Color, Red)
 - Ball-5, Color, and Red are objects related by HasProperty.
 - ColorOf(Ball-5) = Red
 - Ball-5 and Red are objects, and ColorOf() is a function.
 - HasColor(Ball-5(), Red())
 - Ball-5() and Red() are functions of zero arguments that both return an object, which objects are related by HasColor.
 - ...

- This can GREATLY confuse a pattern-matching reasoner.
 - Especially if multiple people collaborate to build the KB, and they all have different representational conventions.
FOL (or FOPC) Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?
Objects --- with their relations, functions, predicates, properties, and general rules.
Summary

• First-order logic:
 – Much more expressive than propositional logic
 – Allows objects and relations as semantic primitives
 – Universal and existential quantifiers
 – syntax: constants, functions, predicates, equality, quantifiers

• Knowledge engineering using FOL
 – Capturing domain knowledge in logical form

• Inference and reasoning in FOL
 – Next lecture

• Required Reading:
 – Chapter 8.1-8.4
 – Next lecture: 8.3-8.4
 – Next lecture: Chapter 9.1-9.2