This lecture begins with a discussion on secret-key and public-key cryptography, and then discusses One-Way Functions (OWF), and their importance in cryptography. Essentially, an OWF is easy to compute, but difficult to invert. A One-Way Permutation (OWP) is an OWF that permutes elements from a set. A Trap-Door Permutation (TDP) is essentially an OWP with certain information, that if disclosed, allows the function to be easily inverted.

No OWF is known to exist, since showing the existence of a function that is truly difficult to invert hasn’t been proven yet. However, there exists good candidates for OWF, OWP, and TDP. I’ll describe Prime Product as an example of an OWF candidate, Modular Exponentiation as an example of an OWP candidate, and RSA as an example of a TDP candidate. And, I’ll back up certain proofs with the appropriate number theory.

Then, I’ll go on to discuss how the assumption of the existence of OWF leads to a secure password-authentication system. And, I’ll show that S/Key System (an example of password-authentication where the information stored and used for authentication keeps changing) is secure using any OWP.

Next, I’ll describe the criticisms made against OWF, OWP, and TDP in practical applications, and give suggestions of how to overcome these criticisms.

1 Computationally Bounded Adversaries

When we say that an adversary (which we’ll call Eve for the rest of this paper) is “Computationally Bounded,” we mean that she can only break a code if there exists a PPT algorithm for this purpose. What is PPT? Let me address that by first defining a Polynomial Time Algorithm.

Definition 1 (poly-time (Polynomial Time) Algorithm) If an algorithm A gets an input of size k, it is considered polynomial time if it runs in $O(k^c)$ time where c is a constant. We write $y = A(x)$ to denote the output of A on input x.

With this definition, now I’ll define PPT.

Definition 2 (PPT (Probabilistic Polynomial Time) Algorithm) It is a polynomial time algorithm A that is randomized. Namely, it is allowed to flip coins during its computation. We write $y = A(x; r)$ to denote the output of A on input x, when r were the internal coin tosses made by A. We write $y \leftarrow A(x)$ to denote the random variable y which corresponds to the randomized output of A on input x. This means that r was chosen at random and $y = A(x; r)$ was computed.

And when I mention that an algorithm with input of size k has probability $\text{negl}(k)$ of portraying some sort of behavior, I’m referring to the definition of $\text{negl}(k)$ mentioned as follows:
Definition 3 (Negligible in terms of k ($\text{negl}(k)$)) An arbitrary function $v(k)$ (possibly a type of probability function) is $\text{negl}(k)$ if:

$$(\forall c > 0) \ (\exists k') \ (\forall k \geq k') \ \left[v(k) \leq \frac{1}{k^c} \right]$$

In other words, $\text{negl}(k)$ means some (unimportant to specify precisely) function $v(k)$ which is less than the inverse of any polynomial expressed in terms of k, for really large k. (Wow! That’s really small. No wonder it’s negligible!)

Let us recall two cryptographic models where the adversary Eve is Computationally Bounded.

1. Secret-Key (Symmetric-Key) Encryption
 - **Before the Encryption**
 Bob and Alice have some sort of secret key S they arranged to use in advance that Eve does not know.
 - **Encryption**
 When Bob wishes to send Alice a plaintext message M via the Internet, Bob encrypts M using secret key S to form a ciphertext C. (Formally, we summarize encryption with S as E_S, and say that $C = E_S(M)$.) Bob then sends C over the Internet to Alice.
 - **Decryption**
 Upon receiving C, Alice uses the same secret key S to decrypt C, giving her M, the original plaintext message. (Formally, we summarize decryption with S as D_S and say that $D_S(C) = D_S(E_S(M)) = M$.)
 - **Eve’s Standpoint**
 Eve only sees C being sent over the Internet. She has no knowledge of S. And, if it is hard for Eve to learn about S or plaintexts based on the ciphertexts, then this system is secure.

2. Public-Key Encryption
 - **Before the Encryption**
 Alice publishes to the world her public key PK. Therefore, both Bob and Eve know what PK is. This public key is only used to encrypt messages, and a separate key SK is used to decrypt messages. (This is unlike the Secret-Key scheme where one key S is used to both encrypt and decrypt.) Only Alice knows what SK is, and nobody else, not even Bob.
 - **Encryption**
 When Bob wishes to send Alice a plaintext message M via the Internet, Bob encrypts M using Alice’s public key PK to form a ciphertext C. (Formally, we summarize encryption with PK as E_{PK} and say that $C = E_{PK}(M)$.) Bob then sends C over the Internet to Alice.

L2-2
• **Decryption**
 Upon receiving C, Alice uses her secret private key SK to decrypt C, giving her M, the original plaintext message. (Formally, we summarize decryption with SK as D_{SK} and say that $D_{SK}(C) = D_{SK}(E_{PK}(M)) = M$.)

• **Eve's Standpoint**
 Unlike the Secret-Key scheme, Eve knows everything Bob knows and can send the same messages Bob can. And, only Alice can decrypt. And, when Bob sends his message, Eve only sees C, and knows PK in advance. But, she has no knowledge of SK. And, if it is hard for Eve to learn about SK or plaintexts based on ciphertexts and PK, then our system is secure.

2 **Primitives**

There are three primitives commonly used in Cryptography. They are:

1. **OWF**: One-Way Functions
2. **OWP**: One-Way Permutations
3. **TDP**: Trap-Door Permutations

The next sections will define these primitives and give candidates of each one (I say candidate, and not example, because the formal existence of OWF, and consequently OWP and TDP, has yet to be proven).

3 **OWF**

A function is One-Way if it is easy to compute, but difficult to invert. And, more formally..

Definition 4 (OWF) A function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ (or, a function f that maps from one set of binary numbers to another, not necessarily the same) is One-Way it it satisfies two properties:

1. ∃ poly-time algorithm which computes $f(x)$ correctly ∀x. (Thus, easy to compute.)
2. ∀ PPT Algorithm A,
 \[
 \Pr(f(z) = y \mid x \leftarrow R \{0,1\}^k; \ y = f(x); \ z \leftarrow R A(y,1^k)) \leq \text{negl}(k)
 \]
 where $\leftarrow R$ means randomly chosen. (So x is randomly chosen from the set of k-bit numbers, and z is randomly outputted from algorithm A when it has y as input.)
 Thus, f is hard to invert. So, in polynomial time (in k) Eve has probability $\text{negl}(k)$ or less of figuring out any preimage of $f(x)$.

And, keep in mind that no proof derived yet shows that OWF’s exist (even if we were to assume $P \neq NP$). However, there’s good evidence OWF’s do exist. And later on, candidate OWF’s will be shown.
4 OWP

A function f is an OWP if it is OWF, and a permutation. More formally,

Definition 5 (OWP) A function f is OWP if:

1. It satisfies all requirements for being OWF.
2. It is a permutation (that is every y has a unique preimage x).

5 TDP

A function f is a TDP if it is OWP, and given certain information, f can be inverted in PPT. More formally,

Definition 6 (TDP) A function f is TDP if:

1. It satisfies the requirements for OWP.
2. There exists a poly-time algorithm I, some constant c, and information t_k such that, for large k, the size of t_k is at most $O(k^c)$, and for any $x \in \{0,1\}^k$, $I(f(x), t_k) = z$ where $f(z) = f(x)$.

Remark 7 For simplicity, the domain of f in all these definitions is $\{0,1\}^n$, i.e. all binary strings. This is done for simplicity. In reality, it suffices to have a sequence of domains D_k and ranges R_k such that: (1) length of elements in D_k and R_k is polynomial in k (say $2k$ or k^2); (2) it is easy (i.e. PPT in k) to sample a random element $x \in D_k$ for every k; (3) given x and k, it is easy (i.e., PPT in k) to tell if $x \in D_k$. Then technically our function f will be a collection of functions $f_k : D_k \rightarrow R_k$. This might seem confusing, but will become extremely clear from the examples.

6 OWP Candidate: Integer Multiplication

Let’s define a function f as $f(p,q) = p \ast q$, where p and q are k-bit primes and \ast is the regular integer multiplication. (So, our domain is the set of pairs of k-bit primes, and $f : \mathbb{P}_k \times \mathbb{P}_k \rightarrow X$ where \mathbb{P}_k is the set of k-bit primes, and X is the set of 2 \ast k-bit numbers whose factorization is made up of two k-bit primes.) So clearly, f is not a permutation.

And, let’s assume that $n = p \ast q$, so that $f(p,q) = p \ast q = n$. Upon seeing n, there’s no known polynomial time algorithm A such that $A(n)$ outputs values p' and q' so that $p' \ast q' = n$ (since we assume n is a product of two primes, then either $p' = p, q' = q$, or $p' = q, q' = p$).

You might think, “Hey! That’s not true! Just test all the numbers from 2 to \sqrt{n}.” And propose a program that works like the following:

for $i = 2$ to \sqrt{n} do
 if (i divides n) then output($i, \frac{n}{i}$);

And you would then claim that your program runs in time $O(\sqrt{n})$, which is polynomial in terms of n. However, keep in mind that the number n inputted into this algorithm
is of magnitude roughly 2^{2k} and of size $2k$, and since $\sqrt{n} \approx \sqrt{2^{2k}} \approx 2^k$, this algorithm runs in time $O(2^k)$, which is exponential in terms of the input size. Thus, this algorithm runs in exponential time. And, no algorithm that’s polynomial (or even probabilistically polynomial) in terms of k is known that can factor n.

Therefore, this function f is easy to compute and difficult to invert, making it a good candidate OWF.

7 OWP Candidate: Modular Exponentiation

We will define the function $f(x, p, g) = (g^x \mod p, p, g)$, where the explanation of the above letters will follow shortly. Notice, however, that since p and g are “copied” through, for convenience instead of this f we will write $f_{p,g}(x) = g^x \mod p$ (implicitly implying that p and g are part of the randomly generated input which are also part of the output). Let me now make some important math definitions, theorems, and observations to make the notation above clear.

For any n, \mathbb{Z}_n is the set of integers from 0 to $n - 1$. The multiplicative group of \mathbb{Z}_n, \mathbb{Z}_n^*, is defined as:

Definition 8 $\mathbb{Z}_n^* = \{ x \mid x \in \mathbb{Z}_n \land \gcd(x, n) = 1 \}$

So, \mathbb{Z}_n^* is the set of elements from \mathbb{Z}_n that are relatively prime to n. Also note that for any n, $0 \notin \mathbb{Z}_n^*$. Also, note that for prime number p, $\mathbb{Z}_p^* = \mathbb{Z}_p - \{0\}$. This is because every number in \mathbb{Z}_p except 0 is relatively prime to p.

Additionally, for any positive integer n, the set \mathbb{Z}_n^* and the multiplication operator (we will often write ab to denote $a \times b \mod n$) form a group. This is because:

1. $(\forall a, b \in \mathbb{Z}_n^*)[(a \times b) \in \mathbb{Z}_n^*]$
2. \mathbb{Z}_n^* has an identity element, which is 1. This is because $(\forall a \in \mathbb{Z}_n^*)[a \times 1 = 1 \times a = a]$
3. $(\forall a \in \mathbb{Z}_n^*)((\exists a' \in \mathbb{Z}_n^*)$ such that $a \times a' = a' \times a = 1$. (I.e., every element in \mathbb{Z}_n^* has an inverse.) This is because for every $a \in \mathbb{Z}_n^*$, $\gcd(a, n) = 1$. Therefore, there exist integers a', n' such that:

 $$aa' + nn' = 1 \Rightarrow aa' = 1 + n(\bar{n'}) \Rightarrow aa' \equiv 1 \mod n$$

 (And, do keep in mind that this fact isn’t always true if we were to deal with elements in \mathbb{Z}_n^*.)

Fermat’s little theorem states that:

Theorem 9 (Fermat’s Little Theorem) *For any prime p and $x \in \mathbb{Z}_p^*$, $x^{p-1} = 1 \mod p$*

Also, for some arbitrary $a \in \mathbb{Z}_p^*$, the smallest x where $a^x = 1 \mod p$ is referred to as the order of a in \mathbb{Z}_p^*. (And, there may be elements in \mathbb{Z}_p^* with order less than $p - 1$. For example, if p is a prime larger than 3, then $(p-1)^2 = (-1)^2 = 1 \mod p$, so the order of $p - 1$ in \mathbb{Z}_p^* is 2, and 2 < $p - 1$ when 3 < p)

And, also note the following number theory theorem.
Theorem 10 (Some Fancy Number Theory Theorem) When p is prime, \mathbb{Z}_p^* has at least one element g with order $p - 1$.

And, elements in \mathbb{Z}_p^* with order $(p - 1)$ are commonly referred to as primitive elements or *generators*. Notice that $\{g^1, g^2, \ldots, g^{p-1}\} = \mathbb{Z}_p^*$. So, raising g to powers ranging from 1 to $p - 1$ (or to $p - 2$, since $g^{p-1} = 1 \mod p$) “generates” all the elements in \mathbb{Z}_p^*.

As a result of all this stuff I just said (which possibly made you fall asleep several times) we can revisit our function $f_{p,g}$ where $f_{p,g}(x) = g^x \mod p$. Here p is a k-bit prime, g is a generator of the set \mathbb{Z}_p^* and $x \in \mathbb{Z}_p - \{0\}$ is the actual input.

We now justify why we believe that $f_{p,g}$ is a OWP. First, since g is a generator, our function could be viewed as a permutation from $\mathbb{Z}_p - \{0\} = \mathbb{Z}_p^*$ to \mathbb{Z}_p^*. Second, we claim that computing $y = g^x \mod p$ could be done in polynomial time as follows. Assuming p has k bits, for any arbitrary $x \in \mathbb{Z}_p^*$, we can find $f_{p,g}(x)$ as follows:

1. Compute $g^{2^i} \mod p$ for every value of i from 0 to $\log_2(p)$, which involves repeated squaring, and takes $O(k)$ multiplications.

2. Look at the binary expansion of x, which might look like: 10011..., and note that $x = 2^{k-1}b_{k-1} + \ldots + 2^1 b_1 + 2^0 b_0$ where each b_i represents a binary digit in x.

3. By plug-in, since

 $g^x = g^{2^{k-1}b_{k-1} + \ldots + 2^1 b_1 + 2^0 b_0} = g^{2^{k-1}b_{k-1}} \ldots g^{2^1 b_1} g^{2^0 b_0} = (g^{2^{k-1}})^{b_{k-1}} \ldots (g^{2^1})^{b_1} (g^{2^0})^{b_0}$

 and each $g^{2^i} \mod p$ has already been found, and each b_i is either 0 or 1, then each $(g^{2^i})^{b_i}$ term modulo p has a known value (either g^{2^i} or 1), and computing the product of all the $(g^{2^i})^{b_i}$ terms modulo p to give g^x is doable in $O(k)$ multiplications.

Overall, we get $O(k^3)$ algorithm. Therefore, $f_{p,g}(x)$ is easy to compute. The inversion problem corresponds to finding x s.t. $g^x = y \mod p$, when given g, p, y as inputs. This is known as the Discrete-Log Problem which is believed to be very hard. Therefore, $f_{p,g}$ is believed to be hard to invert. Because of $f_{p,g}$ is easy to compute, believed to be hard to invert, and definitely is a permutation, $f_{p,g}$ makes a good candidate OWP. Unfortunately, there’s no known trap-door information that can make inverting f easy (which would make it a TDP).

8 TDP Candidate: RSA

An RSA function is defined as $f(x, n, e) = x^e \mod n$. As before, we write for convenience $f_{n,e}(x) = x^e \mod n$, where n is the product of two primes p and q, $x \in \mathbb{Z}_n^*$, $e \in \mathbb{Z}_{\phi(n)}^*$. Now for a bit more number theory. (The fun never stops!)

Definition 11 (Euler phi-function) For any positive integer m, $\phi(m)$ is the number of positive integers less than m that are relatively prime to m.

\footnote{The origin of the term “primitive element” is puzzling. For example, it is certainly non-trivial to show that primitive elements exist in \mathbb{Z}_p^*, as stated by the above theorem.}
As you might have guessed, for any positive integer \(m \), the number of elements in the set \(\mathbb{Z}_m^\times \) is \(\phi(m) \). For any prime \(p \), \(\phi(p) = p - 1 \), since there are \(p - 1 \) positive integers less than \(p \), and they're all relatively prime to \(p \). Additionally, if \(n = pq \) where \(p \) and \(q \) are primes, then \(\phi(n) = (p - 1) \cdot (q - 1) = n - (p + q - 1) \).

Now for Euler's Theorem, which is more general than Fermat's Little Theorem (mentioned earlier).

Theorem 12 For any positive integer \(m \) and any \(a \in \mathbb{Z}_m^\times \), \(a^{\phi(m)} = 1 \) mod \(m \).

Now note that for our RSA function \(f \), we have \(e \in \mathbb{Z}_\phi(n) \). This is to make sure that \(e \) is relatively prime to \(\phi(n) \), so that there exists a \(d \in \mathbb{Z}_\phi(n) \) such that \(ed = 1 \) mod \(\phi(n) \), so that for our \(f_{n,e}(x) = x^e \) mod \(n \), we can get \(x \) back by doing

\[
(x^{\cdot})^d = x^{\cdot d} = x^{\cdot d \mod \phi(n)} = x^1 = x \mod n
\]

And, assuming \(c = f_{n,e}(x) = x^c \) mod \(n \) for some value \(x \), and \(d \) is the inverse of \(e \) modulo \(\phi(n) \) for the rest of this section, note that then since \(x \in \mathbb{Z}_n^\times \) and \(\mathbb{Z}_n^\times \) with the multiplication operator is a group (for reasons mentioned earlier), then \(x \) raised to any power is also an element of \(\mathbb{Z}_n^\times \). Therefore, \(c \in \mathbb{Z}_n^\times \). And so, \(f_{n,e} : \mathbb{Z}_n \to \mathbb{Z}_n \), so \(f \) is a permutation function.

And in our RSA function \(f \) and values \(x \) and \(c \), we assume that \(n \), \(e \), and the method for obtaining \(f_{n,e}(x') \) for some value \(x' \) is public; but the \(x \) value that yields \(c \), the primes \(p \) and \(q \) that make up \(n \), and the value \(d \) that would give \(x \) from \(c \) (since \(c^d = (x^c)^d = x \mod n \)) are all private information.

Notice how things differ here for \(f \) in RSA compared to the \(f \) used in the modular exponentiation section (in spite the fact that they both involve modulus exponentiation).

With the modular exponentiation section, the exponent is secret and the base is public, whereas in RSA, the base is secret and the exponent is public.

And, assuming \(n \) is a \(k \)-bit number, (and therefore, so is \(x \) and \(e \)), from an arbitrary \(x \), \(f_{n,e}(x) = x^e \) mod \(n \) can be computed in time polynomial in terms of \(k \), for reasons mentioned in the Modular Exponentiation section. Therefore, \(f_{n,e} \) is easy to compute.

We also notice that the best known way to invert RSA involves factoring \(n \) into its primes (which allows one to learn \(\phi(n) \), which allows one to figure out a \(d \), and therefore get \(x \) from \(c \), as mentioned earlier), and this is believed to be hard to do (no PPT algorithm known for it yet). In particular, other common methods for inverting \(f_{n,e} \), like finding out \(\phi(n) \) or \(d \) directly have been shown to be just as hard as factoring \(n \). Therefore, \(f \) is believed to be hard to invert.\(^2\)

Additionally, since we just argued that inverting RSA is easy with either the factorization on \(n \) (or the value \(d \) above), RSA is a good TDP candidate.

9 Things to Consider

After seeing all this info on OWF, OWP, and TDP. Here are three important principles in Cryptography to consider.

\(^2\)Even though breaking RSA is believed to be slightly easier than breaking factoring, RSA resisted many attacks and believed to be very hard to invert too.
1. **Cryptography based on general theory**

There are plenty of candidates for OWF, OWP, and TDP with believed hardness to invert based on differing reasons. Therefore, even if we figure out how to easily compute the prime factorization of any number (which for example will break RSA as a TDP candidate), we can still use something else as a candidate. Thus, there are a lot of merits in basing cryptographic constructions on such general primitives like OWF’s, OWP’s or TDP’s. Not only this gives us protection against breaking some specific function believed to be OWF, etc., but also allows us to distill which properties of a given function are crucial to make the construction work.

2. **Cryptography based on specific function assumptions**

Sometimes, we can get more effective schemes if we assume certain function properties, like if $f(a) * f(b) = f(a + b)$ (which is true with the function f used in the Modular Exponentiation section). Thus, for the purposes of efficiency and simplicity, schemes based on specific functions are also extremely useful in practice. Of course, these constructions are also less general than general constructions.

3. **Specific things give rise to actual implementations**

Finally, even implementing general constructions using specific candidates gives rise to the actual real-life systems, showing how our general theory can be applied in practice.

10 **Application of OWF’s: Password Authentication**

I wish to login to a server with my password x, but I don’t want my server to store x, since the server’s contents might be open to the world. (An in fact, in one of my previous jobs, the server not only stored passwords, but did so in a text file that was marked public to the world... oops!)

To solve this issue, I compute $f(x) = y$ where f is OWF, and I tell the server only about y and f. (So the server doesn’t store x.) When I login, I give the server z, and the server checks if $f(z) = y$. Since f is OWF, a hacker can’t figure out a z such that $f(z) = y$ easily (since f being OWF implies that any algorithm A where $A(y) \rightarrow z$ and $f(z) = y$ doesn’t run in PPT), so this system is secure.

However, some problems do occur:

1. **How can we be sure x is uniform?**

 Too many times, we pick passwords based on our login name, real name, birthday, family, friends, the new fancy word used by George W. Bush, etc. Or we pick passwords based on dictionary words, or our passwords are simply too short in length. (A hacker can easily write a program to guess all four-character password combinations until it gets a correct one.) Thus for many, x is not truly randomly chosen and might be easily found.

 Turns out, there are tools (called commitment schemes and extractors) to somewhat overcome this problem. We will not have time to talk about them in this course though.
2. Although x is not stored on the server, how can we trust that a hacker never sees x?

For example, if I connect to this server via telnet, Eve can run a program to identify
myself, snoop onto my session, and read the text of everything I type during this
session. From this, she can figure x based on what I typed. One way to overcome this
is to use ssh (secure shell), because ssh encrypts the text that I type before it is being
sent over the Internet. Therefore, Eve’s snooping will only get her an encryption of
the text I typed, and she’s forced to attempt and decrypt in order to get x. Thus ssh
is much safer than telnet, and is the reason why various companies only allow people
to connect remotely via ssh and not telnet. However, there might exist ways snoop
the password by other ways, so even this also isn’t a perfect solution.

It turns out there are advanced techniques (called identification schemes, zero-knowledge
arguments, and proofs of knowledge) which will solve this problem as well. In the next
section we will present a much simpler simple way to partially solve this problem.

However, assuming a hacker can only see the server’s storage y, cannot see typed pass-
word x, and assuming that x is truly randomly chosen, we immediately see that the password
system mentioned earlier is secure assuming OWF’s exist.

11 Application of OWP’s: S/Key System

Taking the notion of password authentication a step further, let’s suppose that a server
keeps track of T logins you make onto it, and changes the information it stores every time
you login, and what you’d have to type to authenticate yourself will also keep changing
accordingly. (This would prevent a hacker from getting being able to impersonate you after
snooping one of your authentications.) Here is the way to do it. Take a random x, and
computing for each i from 0 to T, $y_i = f^{T-i}(x)$ (so $y_i = f(f \ldots f(x) \ldots)$ applied $(T - i)$
times) where f is OWP. Notice, being a permutation ensures that we can apply f to itself
many times. We give the server only the last result y_0 (and the public function f), and
nothing else. Note $y_0 = f^T(x)$.

Then, the first time we login, the server asks for y_1, and will check if $y_0 = f(y_1)$. If we
correctly give it y_1 where $y_1 = f^{T-1}(x)$, then the server replaces y_0 with y_1.

The next time we login, the server will ask for y_2, and will check if $y_1 = f(y_2)$. Correctly
giving y_2, where $y_2 = f^{T-2}(x)$, will make the server replace y_1 with y_2.

And so on, until the T-th login, where the server asks for y_T, and checks if $y_{T-1} = f(y_T)$. Correctly
giving y_T, where $y_T = f^{T-T}(x) = f^0(x) = x$, ends the chain of T logins, and we
will have to start this process over (i.e., we give the server a new set of y_0 and f and redo
this).

Notice that in the process described above, we start with $y_0 = f^T(x)$. And, for each i,
$y_i = f(y_{i+1})$, therefore, $y_{i+1} = f^{-1}(y_i)$, so we’re inverting f once at each step to get the
next correct y_i value (which the server stores for next time, and the server and hackers
can’t figure out any inverse until you type it in). And, we start over once we end up giving
the server x.

Notice here that after each login, the server not only changes the value it stores, but
stores the value you just entered, so the server (and the hacker) is always “a step behind”.

L2-9
While the S/Key system intuitively seems secure, let us actually prove this formally. We first need to learn about general \(T \)-time password authentication systems. Later we will show that S/Key is indeed such a system.

Definition 13 (\(T \)-time Password Authentication System) A \(T \)-time Password Authentication System is a \(T \)-period protocol between the PPT server and the PPT user. First, given the “security parameter” \(k \), the user and the server engage in the private setup protocol (which runs in time polynomial in \(k \)), after which the user has some secret information \(SK \), and the server has some public information \(PK \). From now on, all the server’s storage (which is initially \(PK \)) is made public, and the user and the server now engage in \(T \) login protocols. After each such protocol, the server decides whether to accept or reject the user. We require the following:

1. If the server talks to the real user (who knows \(SK \) and is honest), the server must accept that user during any of the \(T \) logins.

2. For any number of logins \(t \), even if a hacker sees information the user uses to login to the server from his previous \((t - 1)\) logins (in addition to the server’s storage), the probability that the hacker can impersonate the user’s \(t \)-th login is at best \(\text{negl}(k) \), where \(k \) is the size of the data the hacker sees.

More formally, any \(t < T \) and any PPT \(A \), the probability that the server accepts \(A \) at \(t \)-th login is \(\text{negl}(k) \). The latter probability is taken over the randomness used to setup the system, the randomness used by the user to login the first \((t - 1)\) times, the possible randomness of the server to verify all the logins, and the randomness of \(A \).

It sounds like the S/Key system might be a good example of a \(T \)-time Password Authentication System. In fact it is, but only if the \(f \) used is OWP. (Just having \(f \) being OWF isn’t good enough. See the homework.) Now, let’s prove that if \(f \) is OWP, S/Key is a \(T \)-time Password Authentication System.

Theorem 14 \(\forall \text{OWP } f \), S/Key is a \(T \)-time Password Authentication System.

Proof: Assume there’s some OWP \(f \) such that S/Key is not secure. We’ll show that this assumption leads to the fact that \(f \) is not OWP, which is a contradiction.

Since S/Key is not secure for this \(f \), there is some period \(t \) and some PPT \(A \) that achieve the following. Let \(x \sim \{0,1\}^k \) be chosen at random in the setup phase, let \(y_i = f^{T-i}(x) \), so that the server stores \(y_0 \). Seeing first \((t - 1)\) logins of the real user together with the server’s storage gives \(A \) exactly \(y_0, \ldots, y_{t-1} \). A success for \(A \) at time \(t \) means that \(A(y_{t-1}, \ldots, y_{0}) \rightarrow y'_t \) and \(f(y'_t) = y_{t-1} \). Since \(f \) is a permutation, success means that \(y'_t = y_t \). To summarize, the assumption that S/key is insecure at time period \(t \) implies:

\[
\Pr[y'_t = y_t \mid x \sim \{0,1\}^k, y_i = f^{T-i}(x), \forall 0 \leq i \leq T, y'_t \leftarrow A(y_{t-1}, \ldots, y_0)] = \epsilon
\]

(1)

where \(\epsilon \) is non-negligible.

With this in mind, we construct a new PPT adversary \(\hat{A} \) who will invert OWP \(f \) with non-negligible probability (actually, the same \(\epsilon \)). \(\hat{A} \) will be given \(\hat{y} = f(\hat{x}) \), where \(\hat{x} \) was.
chosen at random from $\{0, 1\}^k$. The goal of $\hat{A}(\hat{y})$ is to come up with \hat{x}. Naturally, \hat{A} will use the hypothetical A to achieve this (impossible) goal. Specifically,

\hat{A}: On input \hat{y} run $z \leftarrow A(\hat{y}, f(\hat{y}), \ldots, f^{l-1}(\hat{y}))$ and output z.

In other words, \hat{A} “fools” A into thinking that \hat{y} was the password y_{t-1} at period $(t-1)$, $f(\hat{y})$ was the password $y_{t-2} = f(y_{t-1})$ at period $(t-2)$, and so on. Notice, since computation of f is poly-time and A is PPT, \hat{A} is PPT as well. Also, since f is a permutation and both x and \hat{x} were chosen at random, the distribution

$$D_0 = \{f^{T-l+1}(x), \ldots, f^T(x)\} = \langle y_{t-1}, \ldots, y_0 \rangle$$

really expected by A in (1), is the same as the distribution

$$D_1 = \{f(\hat{x}), \ldots, f^{l}(\hat{x})\} = \langle \hat{y}, \ldots, f^{l-1}(\hat{y}) \rangle$$

which A received from \hat{A}. Thus, our \hat{A} will succeed in finding the preimage of \hat{y} (which is necessarily \hat{x}) with the same probability ϵ that A find the preimage of y_{t-1}. But this violates the definition f being hard to invert. So f is not OWP, and we get a contradiction. \hfill \Box

12 Application of TDP’s: Weak Public-Key Encryption

This is our original motivation to study TDP’s. namely, define the following public-key “encryption” scheme. The quotes are due to the facts that (1) we have not formally defined what secure public-key encryption means; and (2) the encryption achieved will only satisfy a truly minimal (and insufficient) notion of security. Still, it is a good start.

The public key PK will be the description of the TDP f itself. The secret key SK will be the trapdoor information t_k that makes it easy to invert. To encrypt m, Bob sends Alice $c = f(m)$. Alice decrypts c using the trapdoor t_k. The security of TDP’s says that f is hard to invert if m is random in $\{0, 1\}^k$. thus, the only thing we can say about this encryption is that Eve cannot completely decrypt encryptions of random messages. On the other hand, things are not ruled out are:

- Maybe Eve can get most of the message m (but not all of it). Say, Eve might get half of the message. To see that this threat is actually possible, take any great TDP f'. Define $f(x_1, x_2) = (f'(x_1), x_2)$, where $|x_1| = |x_2| = k/2$. It is very easy to see that f is a TDP such that the “encryption” of $m = (x_1, x_2)$ reveals half of the bits of m (namely x_2). This is a contrived example, but even for “natural” f’s (like RSA) it turns out we can get some information about m from $f(m)$. In fact, one such “information” is the value $f(m)$ itself!

- Nothing is said if m is not random. For example, if an army base uses encryption to communicate with a mobile unit, and the only two messages the base will tell the unit is “attack” or “retreat,” then the enemy unit can compute the values for $f(m)$ when m is “attack” or “retreat,” and based on these values, figure out m from the ciphertext c.

Thus, this encryption leaves much to be desired, but is a non-trivial start.
13 Criticisms against OWF, OWP, TDP

Motivated by the above and the previous example, we can put forward the following criticism to the notions of OWF, OWP, and TDP:

1. When input x is not random, how can we be sure the system is secure?
 See the “attack”/”retreat” example above for the demonstration. (I.e., if x can only be a few values, we can compute the f-map for all these few values, and use this to learn x). It turns out that this issue can be solved. Essentially, we will design our application so that x is always chosen at random! We will see how this is possible on later examples.

2. Viewed an as “encryption”, the function f could reveal a lot of partial information about x. See the pathological example of $f(x_1, x_2) = (f'(x_1), x_2)$ above. More realistically, take the Modular Exponentiation candidate example earlier, where $f_{p,q}(x) = g^x \pmod p = y$. It turns out that from y, the last bit of x can be efficiently extracted, despite the hardness to extract the entire x. (I.e., we can determine if x is even or odd). A proof of this will be shown on the next lecture.

14 Ways out of the Criticism against OWF, OWP, and TDP

But alas, there are few twists we can try in order to avoid the criticisms mentioned above...

1. One way is to design an encryption function $f(x)$ hide all info about x. Unfortunately, this is exactly our goal of designing secure encryption! Thus, we came back to where we started. A new idea is needed to break out! Notice, however, that it is clear that no deterministic f can achieve this goal (see the “attack”/”retreat” example again; more trivially, $f(x)$ is “information” about x). Thus, we know that such f must be probabilistic!

2. If x is only a few values, we can create a function $g(x) = f(x, t) = z$ where t is a counter increased by 1 each time a new message is sent. The German ENIGMA machine during World War II used a technique like this. Fortunately, this had bad consequences for the Germans.\footnote{This shows that sometimes cryptographic ignorance could be of use to the humanity. Hopefully, this argument is outdated by now: ignorance should never be good!} Unfortunately, while useful in practice, this technique lacks formal justification, at least in this simple way. Indeed, if x is not random, (x, z) is not random as well, so we still cannot use our definitions. More importantly, $f(x, z)$ might still allow one to recover most (if not all) of the bits of x.

3. How about requiring $f(x)$ to “completely hide” information about some function $h(x)$. In other words, standard definition tells us that $f(x)$ does not allow the hacker to get x completely, but may allow to get a lot of partial information about x. So maybe we can pin-point some partial information $h(x)$ (i.e., whether x is even or odd) which still remains completely hidden from the adversary who knows $f(x)$. In other words, $f(x)$ does not allow the adversary to learn anything about $h(x)$. Put yet differently, use $f(x)$ to “encrypt” $h(x)$!!! We will see, this is exactly out golden way out...