
Handbook of Satisfiability

Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsch

IOS Press, 2008

c© 2008 Joao Marques-Silva, Ines Lynce and Sharad Malik. All rights reserved.

127

Chapter 4

Conflict-Driven Clause Learning

SAT Solvers
Joao Marques-Silva, Ines Lynce and Sharad Malik

4.1. Introduction

One of the main reasons for the widespread use of SAT in many applications is that
Conflict-Driven Clause Learning (CDCL) Boolean Satisfiability (SAT) solvers are
so effective in practice. Since their inception in the mid-90s, CDCL SAT solvers
have been applied, in many cases with remarkable success, to a number of practi-
cal applications. Examples of applications include hardware and software model
checking, planning, equivalence checking, bioinformatics, hardware and software
test pattern generation, software package dependencies, and cryptography. This
chapter surveys the organization of CDCL solvers, from the original solvers that
inspired modern CDCL SAT solvers, to the most recent and proven techniques.

The organization of CDCL SAT solvers is primarily inspired by DPLL solvers.
As a result, and even though the chapter is self-contained, a reasonable knowledge
of the organization of DPLL is assumed. In order to offer a detailed account of
CDCL SAT solvers, a number of concepts have to be introduced, which serve to
formalize the operations implemented by any DPLL SAT solver.

DPLL corresponds to backtrack search, where at each step a variable and
a propositional value are selected for branching purposes. With each branching
step, two values can be assigned to a variable, either 0 or 1. Branching cor-
responds to assigning the chosen value to the chosen variable. Afterwards, the
logical consequences of each branching step are evaluated. Each time an unsat-
isfied clause (i.e. a conflict) is identified, backtracking is executed. Backtracking
corresponds to undoing branching steps until an unflipped branch is reached.
When both values have been assigned to the selected variable at a branching
step, backtracking will undo this branching step. If for the first branching step
both values have been considered, and backtracking undoes this first branching
step, then the CNF formula can be declared unsatisfiable. This kind of back-
tracking is called chronological backtracking. An alternative backtracking scheme
is non-chronological backtracking, which is described later in this chapter. A more
detailed description of the DPLL algorithm is given in Part 1, Chapter 3.

128 Chapter 4. CDCL Solvers

Besides using DPLL, building a state-of-the-art CDCL SAT solver involves a
number of additional key techniques:

• Learning new clauses from conflicts during backtrack search [MSS96].
• Exploiting structure of conflicts during clause learning [MSS96].
• Using lazy data structures for the representation of formulas [MMZ+01].
• Branching heuristics must have low computational overhead, and must re-

ceive feedback from backtrack search [MMZ+01].
• Periodically restarting backtrack search [GSK98].
• Additional techniques include deletion policies for learnt clauses [GN02],

the actual implementation of lazy data structures [Rya04], the organization
of unit propagation [LSB05], among others.

The chapter is organized as follows. The next section introduces the notation
used throughout the chapter. Afterwards, Section 4.3 summarizes the organi-
zation of modern CDCL SAT solvers. Section 4.4 details conflict analysis, the
procedure used for learning new clauses. Section 4.5 outlines more recent tech-
niques that have been shown to be effective in practice. The chapter concludes
in Section 4.6 by providing a historical perspective of the work on CDCL SAT
solvers.

4.2. Notation

In this chapter, propositional formulas are represented in Conjunctive Normal
Form (CNF). A finite set of Boolean variables is assumed X = {x1, x2, x3, . . . , xn}.
A CNF formula ϕ consists of a conjunction of clauses ω, each of which consists
of a disjunction of literals. A literal is either a variable xi or its complement ¬xi.
A CNF formula can also be viewed as a set of clauses, and each clause can be
viewed as a set of literals. Throughout this chapter, the representation used will
be clear from the context.

Example 4.2.1 (CNF Formula). An example of a CNF formula is:

ϕ = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4) (4.1)

The alternative set representation is:

ϕ = {{x1,¬x2}, {x2, x3}, {x2,¬x4}, {¬x1,¬x3, x4}} (4.2)

In the context of search algorithms for SAT, variables can be assigned a logic
value, either 0 or 1. Alternatively, variables may also be unassigned. Assignments
to the problem variables can be defined as a function ν : X → {0, u, 1}, where u

denotes an undefined value used when a variable has not been assigned a value in
{0, 1}. Given an assignment ν, if all variables are assigned a value in {0, 1}, then
ν is referred to as a complete assignment. Otherwise it is a partial assignment.

Assignments serve for computing the values of literals, clauses and the com-
plete CNF formula, respectively, lν, ων and ϕν . A total order is defined on the
possible assignments, 0 < u < 1. Moreover, 1 − u = u. As a result, the following

Chapter 4. CDCL Solvers 129

definitions apply:

lν =

{

ν(xi) if l = xi

1 − ν(xi) if l = ¬xi
(4.3)

ων = max {lν | l ∈ ω} (4.4)

ϕν = min {ων |ω ∈ ϕ} (4.5)

The assignment function ν will also be viewed as a set of tuples (xi, vi), with
vi ∈ {0, 1}. Adding a tuple (xi, vi) to ν corresponds to assigning vi to xi, such
that ν(xi) = vi. Removing a tuple (xi, vi) from ν, with ν(xi) 6= u, corresponds
to assigning u to xi.

Clauses are characterized as unsatisfied, satisfied, unit or unresolved. A clause
is unsatisfied if all its literals are assigned value 0. A clause is satisfied if at least
one of its literals is assigned value 1. A clause is unit if all literals but one are
assigned value 0, and the remaining literal is unassigned. Finally, a clause is
unresolved if it is neither unsatisfied, nor satisfied, nor unit.

A key procedure in SAT solvers is the unit clause rule [DP60]: if a clause
is unit, then its sole unassigned literal must be assigned value 1 for the clause
to be satisfied. The iterated application of the unit clause rule is referred to as
unit propagation or Boolean constraint propagation (BCP) [ZM88]. In modern
CDCL solvers, as in most implementations of DPLL, logical consequences are
derived with unit propagation. Unit propagation is applied after each branching
step (and also during preprocessing), and is used for identifying variables which
must be assigned a specific Boolean value. If an unsatisfied clause is identified, a
conflict condition is declared, and the algorithm backtracks.

In CDCL SAT solvers, each variable xi is characterized by a number of prop-
erties, including the value, the antecedent and the decision level, denoted respec-
tively by ν(vi) ∈ {0, u, 1}, α(xi) ∈ ϕ ∪ {NIL}, and δ(xi) ∈ {−1, 0, 1, . . . , |X |}. A
variable xi that is assigned a value as the result of applying the unit clause rule
is said to be implied. The unit clause ω used for implying variable xi is said to be
the antecedent of xi, α(xi) = ω. For variables that are decision variables or are
unassigned, the antecedent is NIL. Hence, antecedents are only defined for vari-
ables whose value is implied by other assignments. The decision level of a variable
xi denotes the depth of the decision tree at which the variable is assigned a value
in {0, 1}. The decision level for an unassigned variable xi is −1, δ(xi) = −1. The
decision level associated with variables used for branching steps (i.e. decision

assignments) is specified by the search process, and denotes the current depth of
the decision stack. Hence, a variable xi associated with a decision assignment is
characterized by having α(xi) = NIL and δ(xi) > 0. More formally, the decision
level of xi with antecedent ω is given by:

δ(xi) = max({0} ∪ {δ(xj) |xj ∈ ω ∧ xj 6= xi}) (4.6)

i.e. the decision level of an implied literal is either the highest decision level of the
implied literals in a unit clause, or it is 0 in case the clause is unit. The notation
xi = v @ d is used to denote that ν(xi) = v and δ(xi) = d. Moreover, the decision
level of a literal is defined as the decision level of its variable, δ(l) = δ(xi) if l = xi

or l = ¬xi.

130 Chapter 4. CDCL Solvers

Example 4.2.2 (Decision Levels & Antecedents). Consider the CNF formula:

ϕ = ω1 ∧ ω2 ∧ ω3

= (x1 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x3 ∨ x2 ∨ x4)
(4.7)

Assume that the decision assignment is x4 = 0 @1. Unit propagation yields no
additional implied assignments. Assume the second decision is x1 = 0 @2. Unit
propagation yields the implied assignments x3 = 1 @2 and x2 = 1 @2. Moreover,
α(x3) = ω2 and α(x2) = ω3.

During the execution of a DPLL-style SAT solver, assigned variables as well
as their antecedents define a directed acyclic graph I = (VI , EI), referred to as
the implication graph [MSS96].

The vertices in the implication graph are defined by all assigned variables
and one special node κ, VI ⊆ X ∪ {κ}. The edges in the implication graph are
obtained from the antecedent of each assigned variable: if ω = α(xi), then there is
a directed edge from each variable in ω, other than xi, to xi. If unit propagation
yields an unsatisfied clause ωj , then a special vertex κ is used to represent the
unsatisfied clause. In this case, the antecedent of κ is defined by α(κ) = ωj .

The edges of I are formally defined below. Let z, z1, z2 ∈ VI be vertices in
I (observe that the vertices can be variables or the special vertex κ). In order
to derive the conditions for existence of edges in I, a number of predicates needs
to be defined first. Predicate λ(z, ω) takes value 1 iff ω has a literal in z, and is
defined as follows:

λ(z, ω) =

{

1 if z ∈ ω ∨ ¬z ∈ ω

0 otherwise
(4.8)

This predicate can now be used for testing the value of a literal in z in a given
clause. Predicate ν0(z, ω) takes value 1 iff z is a literal in ω and the value of the
literal is 0:

ν0(z, ω) =

1 if λ(z, ω) ∧ z ∈ ω ∧ ν(z) = 0
1 if λ(z, ω) ∧ ¬z ∈ ω ∧ ν(z) = 1
0 otherwise

(4.9)

Predicate ν1(z, ω) takes value 1 iff z is a literal in ω and the value of the literal
is 1:

ν1(z, ω) =

1 if λ(z, ω) ∧ z ∈ ω ∧ ν(z) = 1
1 if λ(z, ω) ∧ ¬z ∈ ω ∧ ν(z) = 0
0 otherwise

(4.10)

As a result, there is an edge from z1 to z2 in I iff the following predicate takes
value 1:

ǫ(z1, z2) =

1 if z2 = κ ∧ λ(z1, α(κ))
1 if z2 6= κ ∧ α(z2) = ω ∧ ν0(z1, ω) ∧ ν1(z2, ω)
0 otherwise

(4.11)

Consequently, the set of edges EI of the implication graph I is given by:

EI = {(z1, z2) | ǫ(z1, z2) = 1} (4.12)

Finally, observe that a labeling function for associating a clause with each edge
can also be defined. Let ι : VI ×VI → ϕ be the labeling function. Then ι(z1, z2),
with z1, z2 ∈ VI and (z1, z2) ∈ EI , is defined by ι(z1, z2) = α(z2).

Chapter 4. CDCL Solvers 131

x31 = 0@3

x2 = 0@5

x1 = 0@5 x4 = 1@ 5

x3 = 0@5

ω1

ω1

ω2

ω3

ω3

Figure 4.1. Implication graph for example 4.2.3

x31 = 0@ 3

x2 = 0@ 5 x5 = 0@ 5

x1 = 0@ 5 x4 = 1@ 5 κ

x3 = 0@ 5 x6 = 0@ 5

x21 = 0@ 2

ω1

ω1

ω2

ω3

ω3

ω4

ω5

ω6

ω6

ω5

Figure 4.2. Implication graph for example 4.2.4

Example 4.2.3 (Implication Graph without Conflict). Consider the CNF for-
mula:

ϕ1 = ω1 ∧ ω2 ∧ ω3

= (x1 ∨ x31 ∨ ¬x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4)
(4.13)

Assume decision assignment x31 = 0@3. Moreover, assume that the current
decision assignment is x1 = 0@5. The resulting implication graph is shown in
figure 4.1.

Example 4.2.4 (Implication Graph with Conflict). Consider the CNF formula:

ϕ1 = ω1 ∧ ω2 ∧ ω3 ∧ ω4 ∧ ω5 ∧ ω6

= (x1 ∨ x31 ∨ ¬x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4)∧
(¬x4 ∨ ¬x5) ∧ (x21 ∨ ¬x4 ∨ ¬x6) ∧ (x5 ∨ x6)

(4.14)

Assume decision assignments x21 = 0@2 and x31 = 0@3. Moreover, assume the
current decision assignment x1 = 0@5. The resulting implication graph is shown
in figure 4.2, and yields a conflict because clause (x5 ∨ x6) becomes unsatisfied.

4.3. Organization of CDCL Solvers

Algorithm 1 shows the standard organization of a CDCL SAT solver, which es-
sentially follows the organization of DPLL. With respect to DPLL, the main

132 Chapter 4. CDCL Solvers

Algorithm 1 Typical CDCL algorithm

CDCL(ϕ, ν)

1 if (UnitPropagation(ϕ, ν) == CONFLICT)
2 then return UNSAT

3 dl← 0 � Decision level
4 while (not AllVariablesAssigned(ϕ, ν))
5 do (x, v) = PickBranchingVariable(ϕ, ν) � Decide stage
6 dl← dl + 1 � Increment decision level due to new decision
7 ν ← ν ∪ {(x, v)}
8 if (UnitPropagation(ϕ, ν) == CONFLICT) � Deduce stage
9 then β = ConflictAnalysis(ϕ, ν) � Diagnose stage

10 if (β < 0)
11 then return UNSAT
12 else Backtrack(ϕ, ν, β)
13 dl← β � Decrement decision level due to backtracking
14 return SAT

differences are the call to function ConflictAnalysis each time a conflict is
identified, and the call to Backtrack when backtracking takes place. Moreover,
the Backtrack procedure allows for backtracking non-chronologically.

In addition to the main CDCL function, the following auxiliary functions are
used:

• UnitPropagation consists of the iterated application of the unit clause
rule. If an unsatisfied clause is identified, then a conflict indication is
returned.

• PickBranchingVariable consists of selecting a variable to assign and
the respective value.

• ConflictAnalysis consists of analyzing the most recent conflict and
learning a new clause from the conflict. The organization of this proce-
dure is described in section 4.4.

• Backtrack backtracks to the decision level computed by Conflict-

Analysis.
• AllVariablesAssigned tests whether all variables have been assigned,

in which case the algorithm terminates indicating that the CNF formula
is satisfiable. An alternative criterion to stop execution of the algorithm is
to check whether all clauses are satisfied. However, in modern SAT solvers
that use lazy data structures, clause state cannot be maintained accurately,
and so the termination criterion must be whether all variables are assigned.

Arguments to the auxiliary functions are assumed to be passed by reference.
Hence, ϕ and ν are supposed to be modified during execution of the auxiliary
functions.

The typical CDCL algorithm shown does not account for a few often used
techniques, namely search restarts [GSK98, BMS00] and implementation of clause
deletion policies [GN02]. Search restarts cause the algorithm to restart itself, but
already learnt clauses are kept. Clause deletion policies are used to decide learnt
clauses that can be deleted. Clause deletion allows the memory usage of the SAT

Chapter 4. CDCL Solvers 133

solver to be kept under control.

4.4. Conflict Analysis

This section outlines the conflict analysis procedure used by modern SAT solvers.

4.4.1. Learning Clauses from Conflicts

Each time the CDCL SAT solver identifies a conflict due to unit propagation, the
ConflictAnalysis procedure is invoked. As a result, one or more new clauses
are learnt, and a backtracking decision level is computed. The conflict analysis
procedure analyzes the structure of unit propagation and decides which literals
to include in the learnt clause.

The decision levels associated with assigned variables define a partial order
of the variables. Starting from a given unsatisfied clause (represented in the
implication graph with vertex κ), the conflict analysis procedure visits variables
implied at the most recent decision level (i.e. the current largest decision level),
identifies the antecedents of visited variables, and keeps from the antecedents the
literals assigned at decision levels less than the most recent decision level. This
process is repeated until the most recent decision variable is visited.

Let d be the current decision level, let xi be the decision variable, let ν(xi) = v

be the decision assignment, and let ωj be an unsatisfied clause identified with unit
propagation. In terms of the implication graph, the conflict vertex κ is such that
α(κ) = ωj. Moreover, let ⊙ represent the resolution operator. For two clauses ωj

and ωk, for which there is a unique variable x such that one clause has a literal
x and the other has literal ¬x, ωj ⊙ωk contains all the literals of ωj and ωk with
the exception of x and ¬x.

The clause learning procedure used in SAT solvers can be defined by a se-
quence of selective resolution operations [MSS00, BKS04], that at each step yields
a new temporary clause. First, define a predicate that holds if a clause ω has an
implied literal l assigned at the current decision level d:

ξ(ω, l, d) =

{

1 if l ∈ ω ∧ δ(l) = d ∧ α(l) 6= NIL
0 otherwise

(4.15)

Let ω
d,i
L , with i = 0, 1, ..., be the intermediate clause obtained after i resolution

operations. Using the predicate defined by (4.15), this intermediate clause can
be defined as follows:

ω
d,i
L =

α(κ) if i = 0

ω
d,i−1

L ⊙ α(l) if i 6= 0 ∧ ξ(ωd,i−1

L , l, d) = 1

ω
d,i−1

L if i 6= 0 ∧ ∀l ξ(ωd,i−1

L , l, d) = 0

(4.16)

Equation (4.16) can be used for formalizing the clause learning procedure.
The first condition, i = 0, denotes the initialization step given κ in I, where all
literals in the unsatisfied clause are added to the first intermediate clause clause.
Afterwards, at each step i, a literal l assigned at the current decision level d is

134 Chapter 4. CDCL Solvers

Table 4.1. Resolution steps during clause learning

ω
5,0

L
= {x5, x6} Literals in α(κ)

ω
5,1

L
= {¬x4, x6} Resolve with α(x5) = ω4

ω
5,2

L
= {¬x4, x21} Resolve with α(x6) = ω5

ω
5,3

L
= {x2, x3, x21} Resolve with α(x4) = ω3

ω
5,4

L
= {x1, x31, x3, x21} Resolve with α(x2) = ω1

ω
5,5

L
= {x1, x31, x21} Resolve with α(x3) = ω2

ω
5,6

L
= {x1, x31, x21} No more resolution operations given (4.16)

selected and the intermediate clause (i.e. ω
d,i−1

L) is resolved with the antecedent
of l.

For an iteration i such that ω
d,i
L = ω

d,i−1

L , then a fixed point is reached, and

ωL , ω
d,i
L represents the new learnt clause. Observe that the number of resolution

operations represented by (4.16) is no greater than |X |.

Modern SAT solvers implement an additional refinement of equation (4.16),
by further exploiting the structure of implied assignments. This is discussed in
sub-section 4.4.3.

Example 4.4.1 (Clause Learning). Consider example 4.2.4. Applying clause
learning to this example, results in the intermediate clauses shown in table 4.1.
The resulting learnt clause is (x1 ∨ x31 ∨ x21). Alternatively, this clause can be
obtained by inspecting the graph in figure 4.2, and selecting the literals assigned
at decision levels less than the current decision level 5 (i.e. x31 = 0@3 and x21 =
0@2), and by selecting the corresponding decision assignment (i.e. x1 = 0@5).

4.4.2. Completeness Issues

DPLL is a sound and complete algorithm for SAT [DP60, DLL62]. CDCL
SAT solvers implement DPLL, but can learn new clauses and backtrack non-
chronologically.

Clause learning with conflict analysis does not affect soundness or complete-
ness. Conflict analysis identifies new clauses using the resolution operation. Hence
each learnt clause can be inferred from the original clauses and other learnt clauses
by a sequence of resolution steps. If ωL is the new learnt clause, then ϕ is sat-
isfiable if and only if ϕ ∪ {ωL} is also satisfiable. Moreover, the modified back-
tracking step also does not affect soundness or completeness, since backtrack-
ing information is obtained from each new learnt clause. Proofs of soundness
and completeness for different variations of CDCL SAT solvers can be found
in [MS95, MSS99, Zha03].

4.4.3. Exploiting Structure with UIPs

As can be concluded from equation (4.16), the structure of implied assignments in-
duced by unit propagation is a key aspect of the clause learning procedure [MSS96].

Chapter 4. CDCL Solvers 135

This is one of the most relevant aspects of clause learning in SAT solvers. More-
over, the idea of exploiting the structure induced by unit propagation was further
exploited with Unit Implication Points (UIPs) [MSS96]. A UIP is a dominator 1

in the implication graph, and represents an alternative decision assignment at the
current decision level that results in the same conflict. The main motivation for
identifying UIPs is to reduce the size of learnt clauses.

There are sophisticated algorithms for computing dominators in directed
acyclic graphs [Tar74]. For the case of the implication graph, UIPs can be identi-
fied in linear time [MSS94], and so do not add significant overhead to the clause
learning procedure.

In the implication graph, there is a UIP at decision level d, when the number
of literals in ω

d,i
L assigned at decision level d is 1. Let σ(ω, d) be the number of

literals in ω assigned at decision level d. σ(ω, d) can be defined as follows:

σ(ω, d) = |{l ∈ ω | δ(l) = d}| (4.17)

As a result, the clause learning procedure with UIPs is given by:

ω
d,i
L =

α(κ) if i = 0

ω
d,i−1

L ⊙ α(l) if i 6= 0 ∧ ξ(ωd,i−1

L , l, d) = 1

ω
d,i−1

L if i 6= 0 ∧ σ(ωd,i−1

L , d) = 1

(4.18)

Equation (4.18) allows creating a clause containing literals from the learnt
clause until the first UIP is identified. It is simple to develop equations for learning
clauses for each additional UIP. However, as explained below, this is unnecessary
in practice, since the most effective CDCL SAT solvers stop clause learning at
the first UIP [ZMMM01]. Moreover, clause learning could potentially stop at any
UIP, being quite straightforward to conclude that the set of literals of a clause
learnt at the first UIP has clear advantages. Considering the largest decision level
of the literals of the clause learnt at each UIP, the clause learnt at the first UIP
is guaranteed to contain the smallest one. This guarantees the highest backtrack
jump in the search tree.

Example 4.4.2 (Clause Learning with UIPs). Consider again example 4.2.4.
The default clause learning procedure would learn clause (x1 ∨ x31 ∨ x21) (see
example 4.4.1). However, by taking into consideration that x4 = 1@5 is a UIP,
applying clause learning yields the resulting learnt clause (¬x4 ∨ x21), for which
the intermediate clauses are shown in table 4.2. One advantage of this new clause
is that it has a smaller size than the clause learnt in example 4.4.1.

4.4.4. Backtracking Schemes

Although the clause learning scheme of CDCL SAT solvers has remained essen-
tially unchanged since it was proposed in GRASP [MSS96, MSS99], the actual
backtracking step has been further refined. Motivated by the inexpensive back-
tracking achieved with lazy data structures, the authors of Chaff proposed to

1A vertex u dominates another vertex x in a directed graph if every path from x to another
vertex κ contains u [Tar74]. In the implication graph, a UIP u dominates the decision vertex x

with respect to the conflict vertex κ.

136 Chapter 4. CDCL Solvers

Table 4.2. Resolution steps during clause learning with UIPs

ω
5,0

L
= {x5, x6} Literals in α(κ)

ω
5,1

L
= {¬x4, x6} Resolve with α(x5) = ω4

ω
5,2

L
= {¬x4, x21} No more resolution operations given (4.18)

always stop clause learning at the first UIP [ZMMM01]. In addition, Chaff pro-
posed to always backtrack given the information of the learnt clause. Observe
that when each learnt clause is created it has all literals but one assigned value
0 [MSS96], and so it is unit (or assertive). Moreover, each learnt clause will re-
main unit until the search procedure backtracks to the highest decision level of
its other literals. As a result, the authors of Chaff proposed to always take the
backtrack step. This form of clause learning, and associated backtracking pro-
cedure, is referred to as first UIP clause learning. The modified clause learning
scheme does not affect completeness [ZMMM01, Zha03], since each learnt clause
is explained by a sequence of resolution steps, and is assertive when created. Ex-
isting results indicate that the first UIP clause learning procedure may end up
doing more backtracking than the original clause learning of GRASP [ZMMM01].
However, Chaff creates significantly fewer clauses and is significantly more effec-
tive at backtracking. As a result, the first UIP learning scheme is now commonly
used by the majority of CDCL SAT solvers.

Example 4.4.3 (Different Backtracking Schemes). Figure 4.3 illustrates the two
learning and backtracking schemes. In the GRASP [MSS96] learning and back-
tracking scheme, for the first conflict, the decision level of the conflict is kept
(i.e. decision level 5). Backtracking only occurs if the resulting unit propagation
yields another conflict. In contrast, in the Chaff [MMZ+01] learning and back-
tracking scheme, the backtrack step is always taken after each conflict. For the
example in the figure, GRASP would proceed from decision level 5, whereas Chaff
backtracks to decision level 2, and proceeds from decision level 2. One motivation
for this difference is due to the data structures used. In GRASP backtracking is
costly, and depends on the total number of literals, whereas in Chaff backtracking
is inexpensive, and depends only on the assigned variables.

Figure 4.3 also illustrates the clauses learnt by GRASP and Chaff. Since
Chaff stops at the first UIP, only a single clause is learnt. In contrast, GRASP
learns clauses at all UIPs. Moreover, GRASP also learns a global clause, which
it then uses either for forcing the second branch at the current decision level (in
this case 5) or for backtracking. The global clause used in GRASP is optional
and serves to ensure that at a given decision level both branches are made with
respect to the same variable.

4.4.5. Uses of Clause Learning

Clause learning finds other applications besides the key efficiency improvements
to CDCL SAT solvers. One example is clause reuse [MSS97, Str01]. In a large
number of applications, clauses learnt for a given CNF formula can often be

Chapter 4. CDCL Solvers 137

x31

x21

3

1

x1

2

4

5

(x1 ∨ x31 ∨ x4)

(¬x4 ∨ x21)

(x1 ∨ x21 ∨ x31)

conflict

(a) GRASP clause learning [MSS96]

x31

x21

3

1

x1

2

4

5

conflict

(¬x4 ∨ x21)

x4 = 0

(b) Chaff clause learning [MMZ+01]

Figure 4.3. Alternative backtracking schemes

reused for related CNF formulas. Clause reuse is also used in incremental SAT,
for example in algorithms for pseudo-Boolean optimization [ES06].

Moreover, for unsatisfiable subformulas, the clauses learnt by a CDCL SAT
solver encode a resolution refutation of the original formula [ZM03, BKS04].
Given the way clauses are learnt in SAT solvers, each learnt clause can be ex-
plained by a number of resolution steps, each of which is a trivial resolution
step [BKS04, Gel07]. As a result, the resolution refutation can be obtained from
the learnt clauses in linear time and space on the number of learnt clauses [ZM03,
Gel07].

For unsatisfiable formulas, the resolution refutations obtained from the clauses
learnt by a SAT solver serve as a certificate for validating the correctness of the
SAT solver. Moreover, resolution refutations based on clause learning find key
practical applications, including hardware model checking [McM03].

Besides allowing producing a resolution refutation, learnt clauses also allow
identifying a subset of clauses that is also unsatisfiable. For example, a minimally

unsatisfiable subformula can be derived by iteratively removing a single clause
and checking unsatisfiability [ZM03]. Unnecessary clauses are discarded, and
eventually a minimally unsatisfiable subformula is obtained.

The success of clause learning in SAT motivated its use in a number of ex-
tensions of SAT. Clause learning has also been applied successfully in algorithms
for binate covering [MMS00a, MMS02], pseudo-Boolean optimization [MMS00b,
MMS04, ARMS02, CK03] , quantified Boolean formulas [Let02, ZM02, GNT02]

138 Chapter 4. CDCL Solvers

, and satisfiability modulo theories [GHN+04] . In binate covering and pseudo-
Boolean optimization, clause learning has also been used for backtracking from
bound conflicts associated with the cost function [MMS02, MMS04].

4.5. Modern CDCL Solvers

This section describes modern CDCL solvers. Apart from conflict analysis, these
solvers include lazy data structures, search restarts, conflict-driven branching
heuristics and clause deletion strategies.

4.5.1. Lazy Data Structures

Implementation issues for SAT solvers include the design of suitable data struc-
tures for storing clauses, variables and literals. The implemented data structures
dictate the way BCP and conflict analysis are implemented and have a significant
impact on the run time performance of the SAT solver. Recent state-of-the-art
SAT solvers are characterized by using very efficient data structures, intended to
reduce the CPU time required per each node in the search tree. Conversely, tradi-
tional SAT data structures are accurate, meaning that is possible to know exactly
the value of each literal in the clause. Examples of traditional data structures,
also called adjacency lists data structures, can be found in GRASP [MSS96], rel-
sat [BS97] and satz [LA97]. Examples of the most recent SAT data structures,
which are not accurate and therefore are called lazy, include the head/tail lists
used in Sato [Zha97] and the watched literals used in Chaff [MMZ+01].

Traditional backtrack search SAT algorithms represent clauses as lists of lit-
erals, and associate with each variable x a list of the clauses that contain a literal
in x. Clearly, after assigning a variable x the clauses with literals in x are imme-
diately aware of the assignment of x. The lists associated with each variable can
be viewed as containing the clauses that are adjacent to that variable. In general,
we use the term adjacency lists to refer to data structures in which each variable
x contains a complete list of the clauses that contain a literal in x.

These adjacency lists data structures share a common problem: each variable
x keeps references to a potentially large number of clauses, which in CDCL SAT
solvers often increase as the search proceeds. Clearly, this impacts negatively the
amount of operations associated with assigning x. Moreover, it is often the case
that most of x’s clause references do not need to be analyzed when x is assigned,
since most of the clauses do not become unit or unsatisfied. Observe that lazily

declaring a clause to be satisfied does not affect the correctness of the algorithm.
Considering that only unsatisfied and unit clauses must be identified, it suf-

fices to have two references for each clause. (Although additional references may
be required to guarantee clauses’ consistency after backtracking.) These refer-
ences never reference literals assigned value 0. Hence, such references are allowed
to move along the clause: whenever a referenced literal is assigned value 0, the
reference moves to another literal either assigned value 1 or assigned value u (i.e.
unassigned). Algorithm 2 shows how the value and the position of these two
references (refA and refB) are enough for declaring a clause to be satisfied, un-
satisfied or unit. As already mentioned, a clause is lazily declared to be satisfied,

Chapter 4. CDCL Solvers 139

Algorithm 2 Identifying clauses status with lazy data structures

Clause Status(ω)

1 if refA(ω) == 1 or refB(ω) == 1
2 then return SATISFIED

3 else if refA(ω) == 0 and position refA(ω) == position refB(ω)
4 then return UNSATISFIED

5 else if refA(ω) == u and position refA(ω) == position refB(ω)
6 then return UNIT

7 else return UNRESOLVED

meaning that some clauses being satisfied are not recognized as so (being identi-
fied as unresolved instead). Again, this aspect does not affect the correctness of
the algorithm.

In this section we analyze lazy data structures, which are characterized by
each variable keeping a reduced set of clauses’ references, for each of which the
variable can be effectively used for declaring the clause as unit, as satisfied or as
unsatisfied.

4.5.1.1. The Head and Tail Data Structure

The first lazy data structure proposed for SAT was the Head and Tail (H/T)
data structure, originally used in the Sato SAT solver [Zha97] and later described
in [ZS00]. As the name implies, this data structure associates two references with
each clause, the head (H) and the tail (T) literal references.

Initially the head reference points to the first literal, and the tail reference
points to the last literal. Each time a literal pointed to by either the head or
tail reference is assigned, a new unassigned literal is searched for. Both pointers
move towards to the middle of the clause. In case an unassigned literal is identi-
fied, it becomes the new head (or tail) reference, and a new reference is created
and associated with the literal’s variable. These references guarantee that H/T
positions are correctly recovered when the search backtracks. In case a satisfied
literal is identified, the clause is declared satisfied. In case no unassigned literal
can be identified, and the other reference is reached, then the clause is declared
unit, unsatisfied or satisfied, depending on the value of the literal pointed to by
the other reference.

When the search process backtracks, the references that have become associ-
ated with the head and tail references can be discarded, and the previous head
and tail references become activated. Observe that this requires in the worst-case
associating with each clause a number of literal references in variables that equals
the number of literals.

This data structure is illustrated in figure 4.4(left). We illustrate the H/T
data structure for one clause for a sequence of assignments. Each clause is rep-
resented by an array of literals. Literals have different representations depending
on being unassigned, assigned value 0 (unsatisfied) or assigned value 1 (satis-
fied). Each assigned literal is associated with a decision level indicating the level
where the literal was assigned. In addition, we represent the head (H) and tail

140 Chapter 4. CDCL Solvers

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

HT

H

H

H

H

H

T

T

T

T

T

@1 @2

@2 @3@1

@1@4 @3@2

@1@4 @3@2

@1 @2

unassigned unsatisfied satisfied

@1 @2

WL
WW

@1 @2 @3

W W

@4 @1 @2 @3

WW

@4 @1 @2 @3

W

WW

W

@1 @2

Backtracking

Unit Clause

Figure 4.4. Operation of lazy data structures

(T) pointers that point to a specific literal. Initially, the H/T pointer points to
the left/rightmost literal, respectively. These pointers only point to unassigned
literals. Hence, each time one literal pointed by one of these pointers is assigned,
the pointer has to move inwards. However, a new reference for the just assigned
literal is created (represented with a dash line). When the two pointers reach the
same unassigned literal the clause is unit. When the search backtracks, the H/T
pointers must be moved. The pointers are now placed at its previous positions,
i.e. at the position they were placed before being moved inwards.

4.5.1.2. The Watched Literal Data Structure

The more recent Chaff SAT solver [MMZ+01] proposed a new data structure, the
Watched Literals (WL), that solves some of the problems posed by H/T lists. As
with H/T lists, two references are associated with each clause. However, and in
contrast with H/T lists, there is no order relation between the two references,
allowing the references to move in any direction. The lack of order between
the two references has the key advantage that no literal references need to be
updated when backtracking takes place. In contrast, unit or unsatisfied clauses
are identified only after traversing all the clauses’ literals; a clear drawback. The
identification of satisfied clauses is similar to H/T lists.

Chapter 4. CDCL Solvers 141

The most significant difference between H/T lists and watched literals occurs
when the search process backtracks, in which case the references to the watched
literals are not modified. Consequently, and in contrast with H/T lists, there
is no need to keep additional references. This implies that for each clause the
number of literal references that are associated with variables is kept constant.

This data structure is also illustrated in figure 4.4(right). The two watched
literal pointers are undifferentiated as there is no order relation. Again, each
time one literal pointed by one of these pointers is assigned, the pointer has to
move inwards. However, in contrast with the H/T data structure, these pointers
may move in both directions. This causes the whole clause to be traversed when
the clause becomes unit. In addition, no references have to be kept to the just
assigned literals, since pointers do not move when backtracking.

4.5.1.3. Variations of the Lazy Data Structures

Even though lazy data structures suffice for backtrack search SAT solvers that
solely utilize BCP, the laziness of these data structures may pose some prob-
lems, in particular for algorithms that aim the integration of more advanced
techniques for the identification of necessary assignments, namely restricted reso-
lution, two-variable equivalence, and pattern-based clause inference, among other
techniques [GW00, MS00, Bra01, Bac02]. For these techniques, it is essential to
know which clauses become binary and/or ternary during the search. However,
lazy data structures are not capable of keeping precise information about the set
of binary and/or ternary clauses. Clearly, this can be done by associating addi-
tional literal references with each clause, which introduces additional overhead.
Actually, the use of additional references has first been referred in [Gel02].

In addition we may use literal sifting [LMS05], along with two additional ref-
erences, to dynamically rearrange the list of literals. Assigned variables are sorted
by non-decreasing decision level, starting from the first or last literal reference,
and terminating at the most recently assigned literal references. This sorting is
achieved by sifting assigned literals as each is visited by one of the two usual
references. The main disadvantage is the requirement to visit all literals between
the two additional literal sifting references each time the clause is either unit or
unsatisfied. (There could be only one literal sifting reference, even though the
overhead of literal sifting then becomes more significant.) Observe that literal
sifting may be implemented either in H/T data structures or in watched literals
data structures.

Later on, a different data structure (Watched Lists with Conflict Counter,
WLCC) was introduced with the purpose of combining the advantages of WL
and sifting. Overall, WLCC has the advantage of reducing the number of literals
to be visited by pointers [Nad02].

Another optimization is the special handling of the clauses that are more
common in problem instances: binary and ternary clauses [LMS05, Rya04, PH02].
Both binary and ternary clauses can be identified as unit, satisfied or unsatisfied
in constant time, thus eliminating the need for moving literal references around.
Since the vast majority of the initial number of clauses for most real-world problem
instances are either binary or ternary, the average CPU time required to handle
each clause may be noticeably reduced. In this situation, lazy data structures are

142 Chapter 4. CDCL Solvers

Table 4.3. Comparison of the data structures

data structures AL HT WL

lazy data structure? N Y Y

literal references
min L 2C 2C
max L L 2C

visited literals
when identifying
unit/unsat cls

min 1 1 W-1
max 1 W-1 W-1

when backtracking Lb Lb 0
L = number of literals
C = number of clauses
W = number of literals in clause
Lb = number of literals to be unassigned when backtracking

solely applied to original large clauses and to clauses recorded during the search
process, which are known for having a huge number of literals.

4.5.1.4. A Comparison of Data Structures

Besides describing the organization of each data structure, it is also interesting
to characterize each one in terms of the memory requirements and computational
effort. Table 4.3 provides a comparison of the data structures described above,
including the traditional data structures (Adjacency Literals, AL) and the lazy
data structures (Head and Tail literals, HT, and Watched Literals, WL).

The table indicates which data structures are lazy, the minimum and maxi-
mum total number of literal references associated with all clauses, and also a broad
indication of the work associated with keeping clause state when the search either
moves forward (i.e. implies assignments) or backward (i.e. backtracks).

Even though it is straightforward to prove the results shown, a careful analysis
of the behavior of each data structure is enough to establish these results. For
example, when backtracking takes place, the WL data structure updates no literal
references. Hence, the number of visited literal references for each conflict is 0.

4.5.2. Search Restarts

Rapid randomized restarts were introduced in complete search to eliminate heavy-
tails [GSK98]. The heavy-tailed behaviour is characterized by a non-negligible
probability of hitting a problem that requires exponentially more time to solve
than any that has been encountered before [GSC97]. Randomization applied to
variable and/or value selection ensures with high probability that different sub-
trees are searched each time the backtrack search algorithm is restarted.

Current state-of-the-art SAT solvers already incorporate random restarts
[BMS00, MMZ+01, GN02]. In these SAT solvers, variable selection heuristics
are randomized and search restart strategies are used. Randomized restarts have
first been shown to yield dramatic improvements on satisfiable random instances
that exhibit heavy-tailed behavior [GSK98]. However, this strategy is also quite
effective for real-world instances, including unsatisfiable instances [BMS00].

The use of restarts implies the use of additional techniques to guarantee com-
pleteness. Observe that restarting the search after a specific number of backtracks

Chapter 4. CDCL Solvers 143

(or alternatively a specific number of search nodes) may cause the search to be-
come incomplete, as not enough search space may be provided for a solution to
be found. A simple solution to this problem is to increase the cutoff to iteratively
increase the search space [GSK98, BMS00]. In addition, in the context of CDCL
SAT solvers the clauses learnt may be used. On the one hand, the clauses learnt
in previous runs may also be useful in the next runs, as similar conflicts may arise.
On the other hand, the number of learnt clauses to be kept may be used as the
cutoff to be increased. If all clauses are kept then we may ensure that the search
is complete. Even better, we may keep only one clause learnt on each iteration
and this condition suffices to guarantee completeness [LMS07].

More recently, an empirical evaluation has been performed to understand the
relation between the decision heuristic, backtracking scheme, and restart policy
in the context of CDCL solvers [Hua07]. When the search restarts, the branching
heuristic scores represent the solver’s current state of belief about the order in
which future decisions should be made. Hence, without the freedom of restarts,
the solver would not be able to fully execute its belief because it is bound by the
decisions that have been made earlier. This observation further motivates for the
use of rapid randomized restarts. Indeed, the author has performed an empir-
ical evaluation on using different restart schemes on a relevant set of industrial
benchmarks and Luby’s strategy [LSZ93] has shown the best performance.

4.5.3. Conflict-Driven Branching Heuristics

The early branching heuristics made use of all the information available from
the data structures, namely the number of satisfied/unsatisfied and unassigned
literals. These heuristics are updated during the search and also take into account
the clauses that are learnt. An overview on such heuristics is provided in [MS99].

More recently, a different kind of variable selection heuristic (referred to as
VSIDS, Variable State Independent Decaying Sum) has been proposed by Chaff
authors [MMZ+01]. One of the reasons for proposing this new heuristic was the
introduction of lazy data structures, where the knowledge of the dynamic size of
a clause is not accurate. Hence, the heuristics described above cannot be used.

VSIDS selects the literal that appears most frequently over all the clauses,
which means that one counter is required for each one of the literals. Initially, all
counters are set to zero. During the search, the metrics only have to be updated
when a new recorded clause is created. More than to develop an accurate heuristic,
the motivation has been to design a fast (but dynamically adapting) heuristic. In
fact, one of the key properties of this strategy is the very low overhead, due to
being independent of the variable state.

Two Chaff-like SAT solvers, BerkMin [GN02] and siege [Rya04], have im-
proved the VSIDS heuristic. BerkMin also measures clauses’ age and activity
for deciding the next branching variable, whereas siege gives priority to assigning
variables on recently recorded clauses.

4.5.4. Clause Deletion Strategies

Unrestricted clause recording can in some cases be impractical. Recorded clauses
consume memory and repeated recording of clauses can eventually lead to the

144 Chapter 4. CDCL Solvers

exhaustion of the available memory. Observe that the number of recorded clauses
grows with the number of conflicts; in the worst case, such growth can be expo-

nential in the number of variables. Furthermore, large recorded clauses are known
for not being particularly useful for search pruning purposes [MSS96]. Adding
larger clauses leads to additional overhead for conducting the search process and,
hence, it eventually costs more than what it saves in terms of backtracks.

As a result, there are three main solutions for guaranteeing the worst case
growth of the recorded clauses to be polynomial in the number of variables:

1. We may consider n-order learning, that records only clauses with n or
fewer literals [Dec90a].

2. Clauses can be temporarily recorded while they either imply variable as-
signments or are unit clauses, being discarded as soon as the number of
unassigned literals is greater than an integer m. This technique is named
m-size relevance-based learning [BS97].

3. Clauses with a size less than a threshold k are kept during the subsequent
search, whereas larger clauses are discarded as soon as the number of
unassigned literals is greater than one. We refer to this technique as k-

bounded learning [MSS96].

Observe that k-bounded learning can be combined with m-size relevance-
based learning. The search algorithm is organized so that all recorded clauses of
size no greater than k are kept and larger clauses are deleted only after m literals
have become unassigned.

More recently, a heuristic clause deletion policy has been introduced [GN02].
Basically, the decision whether a clause should be deleted is based not only on
the number of literals but also on its activity in contributing to conflict making
and on the number of decisions taken since its creation.

4.5.5. Additional Topics

Other relevant techniques include the use of preprocessing aiming at reducing
the formula size in order to speedup overall SAT solving time [EB05]. These
techniques are expected to eliminate variables and clauses using an efficient im-
plementation.

An additional topic is the use of early conflict detection BCP with an im-
plication queue sorting [LSB05]. The idea is to use a heuristic to select which
implications to check first from the implication queue. This is in contrast to other
solvers which process the implication queue in chronological order.

More recently, it has been shown that modern CDCL solvers implicitly build
and prune a decision tree whose nodes are associated with flipped variables.
This motivates a practical useful enhancement named local conflict-clause record-
ing [DHN07]. A local conflict clause is a non-asserting conflict clause, recorded
in addition to the first UIP conflict clause if the last decision level contains some
flipped variables that have implied the conflict. The last variable in these circum-
stances is considered to be a decision variable, defining a new decision level. A
local conflict clause is the first UIP clause with respect to this new decision level.

A potential disadvantage of CDCL SAT solvers is that all decision and implied
variable assignments made between the level of the conflict and the backtracking

Chapter 4. CDCL Solvers 145

level are erased during backtracking. One possible solution is to simply save the
partial decision assignments [PD07]. When the solver decides to branch on a
variable, it first checks whether there is information saved with respect to this
variable. In case it exists, the solver assigns the variable with the same value that
has been used in the past. In case it does not exist, the solver uses the default
phase selection heuristic.

4.6. Bibliographical and Historical Notes

Learning from conflicting conditions has a long history. Dependency-directed
backtracking was first proposed by Stallman and Sussman [SS77], and was used
and extended in a number of areas, including Truth Maintenance Systems [Doy79]
and Logic Programming [PP80, Bru81]. In Constraint Programming, original
work addressed conditions for non-chronological backtracking [Gas77]. More re-
cent work addressed learning [Dec90b, Gin93, FD94] and alternative forms of
non-chronological backtracking [Dec90b, Pro93].

The use of learning and associated non-chronological backtracking in SAT
was first proposed in the mid 90s [MS95, MSS96]. Later independent work also
proposed clause learning for SAT [BS97].

The original work on using clause learning in SAT was inspired by earlier
work in other areas. However, key new ideas were proposed in the GRASP SAT
solver [MSS96, MSS99], that explain the success of modern SAT solvers. Besides
implementing clause learning and non-chronological backtracking, one key aspect
of GRASP was its ability for exploiting the structure of implied assignments
provided by unit propagation. This idea allows learning much smaller clauses,
many of which end up being unrelated with most branching steps made during
DPLL. This ability for exploiting the intrinsic structure of practical SAT problems
is the main reason for the success of CDCL SAT solvers.

Besides clause learning based on unit propagation, GRASP also proposed
UIPs, another hallmark of modern SAT solvers. UIPs represent dominators in the
implication graph, and can be viewed as another technique for further exploiting
the structure of unit propagation. UIPs were inspired by the other form of domi-
nators in circuit testing, the Unique Sensitization Points (USPs) [MSS94, MS95].

Despite the original success of CDCL SAT solvers, the application of SAT to
a number of strategic applications in the late 90s, including model checking and
model finding, motivated the development of more effective SAT solvers. The
outcome was Chaff [MMZ+01]. Chaff also proposed a number of contributions
that are now key to all modern CDCL SAT solvers, including the watched literals

lazy data structure, the conflict-inspired VSIDS branching heuristic, and the first-
UIP backtracking scheme [ZMMM01].

Finally, there are several recent contributions that have been used the best
performing SAT solvers in the SAT competitions [LSR], namely simplification of
CNF formulas [EB05], priority queue for unit propagation [LSB05], lightweight
component caching [PD07], and more complex clause learning schemes [DHN07].

146 Chapter 4. CDCL Solvers

References

[ARMS02] F. Aloul, A. Ramani, I. Markov, and K. A. Sakallah. Generic ILP
versus specialized 0-1 ILP: An update. In International Conference

on Computer-Aided Design, pages 450–457, November 2002.
[Bac02] F. Bacchus. Exploiting the computational tradeoff of more reasoning

and less searching. In Fifth International Symposium on Theory and

Applications of Satisfiability Testing, pages 7–16, May 2002.
[BKS04] P. Beame, H. A. Kautz, and A. Sabharwal. Towards understanding

and harnessing the potential of clause learning. Journal of Artificial

Intelligence Research, 22:319–351, 2004.
[BMS00] L. Baptista and J. P. Marques-Silva. Using randomization and learn-

ing to solve hard real-world instances of satisfiability. In International

Conference on Principles and Practice of Constraint Programming,
pages 489–494, September 2000.

[Bra01] R. I. Brafman. A simplifier for propositional formulas with many
binary clauses. In International Joint Conference on Artificial Intel-

ligence, August 2001.
[Bru81] M. Bruynooghe. Solving combinatorial search problems by intelligent

backtracking. Information Processing Letters, 12(1):36–39, 1981.
[BS97] R. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to

solve real-world SAT instances. In National Conference on Artificial

Intelligence, pages 203–208, July 1997.
[CK03] D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint solver.

In Design Automation Conference, pages 830–835, June 2003.
[Dec90a] R. Dechter. Enhancement schemes for constraint processing: back-

jumping, learning, and cutset decomposition. Artificial Intelligence,
41(3):273–312, January 1990.

[Dec90b] R. Dechter. Enhancement schemes for constraint processing: Back-
jumping, learning, and cutset decomposition. Artificial Intelligence,
41(3):273–312, 1990.

[DHN07] N. Dershowitz, Z. Hanna, and A. Nadel. Towards a better under-
standing of the functionality of a conflict-driven SAT solver. In In-

ternational Conference in Theory and Applications of Satisfiability

Testing, pages 287–293, 2007.
[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program

for theorem-proving. Communications of the ACM, 5:394–397, July
1962.

[Doy79] J. Doyle. A truth maintenance system. Artificial Intelligence,
12(3):231–272, 1979.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, July 1960.

[EB05] N. Eén and A. Biere. Effective preprocessing in SAT through variable
and clause elimination. In International Conference in Theory and

Applications of Satisfiability Testing, pages 61–75, 2005.
[ES06] N. Eén and N. Sörensson. Translating pseudo-Boolean constraints

into SAT. Journal on Satisfiability, Boolean Modeling and Computa-

Chapter 4. CDCL Solvers 147

tion, 2:1–26, March 2006.
[FD94] D. Frost and R. Dechter. Dead-end driven learning. In National

Conference on Artificial Intelligence, pages 294–300, 1994.
[Gas77] J. Gaschnig. A general backtrack algorithm that eliminates most

redundant tests. In International Joint Conference on Artificial In-

telligence, page 457, 1977.
[Gel02] A. Van Gelder. Generalizations of watched literals for backtracking

search. In International Symposium on Artificial Intelligence and

Mathematics, January 2002.
[Gel07] A. Van Gelder. Verifying propositional unsatisfiability: Pitfalls to

avoid. In International Conference on Theory and Applications of

Satisfiability Testing, pages 328–333, 2007.
[GHN+04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.

DPLL(T): Fast decision procedures. In Computer-Aided Verification,
pages 175–188, 2004.

[Gin93] M. L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelli-

gence Research, 1:25–46, 1993.
[GN02] E. Goldberg and Y. Novikov. BerkMin: a fast and robust SAT-

solver. In Design, Automation and Testing in Europe Conference,
pages 142–149, March 2002.

[GNT02] E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quanti-
fied Boolean logic satisfiability. In National Conference on Artificial

Intelligence, pages 649–654, August 2002.
[GSC97] C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in

combinatorial search. In International Conference on Principles and

Practice of Constraint Programming, pages 121–135, 1997.
[GSK98] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial

search through randomization. In National Conference on Artificial

Intelligence, pages 431–437, July 1998.
[GW00] J. F. Groote and J. P. Warners. The propositional formula checker

heerhugo. In I. Gent, H. van Maaren, and T. Walsh, editors, SAT

2000, pages 261–281. IOS Press, 2000.
[Hua07] J. Huang. The effect of restarts on clause learning. In International

Joint Conference on Artificial Intelligence, pages 2318–2323, 2007.
[LA97] C. M. Li and Anbulagan. Look-ahead versus look-back for satisfiabil-

ity problems. In International Conference on Principles and Practice

of Constraint Programming, pages 341–355, October 1997.
[Let02] R. Letz. Lemma and model caching in decision procedures for quan-

tified Boolean formulas. In International Conference on Automated

Reasoning with Analytic Tableau x and Related Methods, pages 160–
175, July 2002.

[LMS05] I. Lynce and J. P. Marques-Silva. Efficient data structures for back-
track search SAT solvers. Annals of Mathematics and Artificial In-

telligence, 47(1):137–152, January 2005.
[LMS07] I. Lynce and J. P. Marques-Silva. Random backtracking in backtrack

search algorithms for satisfiability. Discrete Applied Mathematics,
155(12):1604–1612, 2007.

148 Chapter 4. CDCL Solvers

[LSB05] M. D. T. Lewis, T. Schubert, and B. Becker. Speedup techniques uti-
lized in modern SAT solvers. In International Conference in Theory

and Applications of Satisfiability Testing, pages 437–443, 2005.
[LSR] D. Le Berre, L. Simon, and O. Roussel. SAT competition.

www.satcompetition.org.
[LSZ93] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Ve-

gas algorithms. Information Processing Letters, 47(4):173–180, 1993.
[McM03] K. L. McMillan. Interpolation and SAT-based model checking. In

Computer-Aided Verification, 2003.
[MMS00a] V. Manquinho and J. P. Marques-Silva. On using satisfiability-based

pruning techniques in covering algorithms. In Design, Automation

and Test in Europe Conference, pages 356–363, March 2000.
[MMS00b] V. Manquinho and J. P. Marques-Silva. Search pruning conditions

for Boolean optimization. In European Conference on Artificial In-

telligence, pages 130–107, August 2000.
[MMS02] V. M. Manquinho and J. P. Marques-Silva. Search pruning techniques

in SAT-based branch-and-bound algorithms for the binate covering
problem. IEEE Transactions on Computer-Aided Design, 21(5):505–
516, May 2002.

[MMS04] V. Manquinho and J. P. Marques-Silva. Satisfiability-based algo-
rithms for Boolean optimization. Annals of Mathematics and Artifi-

cial Intelligence, 40(3-4), March 2004.
[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engi-

neering an efficient SAT solver. In Design Automation Conference,
pages 530–535, June 2001.

[MS95] J. P. Marques-Silva. Search Algorithms for Satisfiability Problems in

Combinational Switching Circuits. PhD thesis, University of Michi-
gan, May 1995.

[MS99] J. P. Marques-Silva. The impact of branching heuristics in propo-
sitional satisfiability algorithms. In Proceedings of the Portuguese

Conference on Artificial Intelligence, pages 62–74, September 1999.
[MS00] J. P. Marques-Silva. Algebraic simplification techniques for propo-

sitional satisfiability. In International Conference on Principles

and Practice of Constraint Programming, pages 537–542, September
2000.

[MSS94] J. P. Marques-Silva and K. A. Sakallah. Dynamic search-space prun-
ing techniques in path sensitization. In Design Automation Confer-

ence, pages 705–711, June 1994.
[MSS96] J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search al-

gorithm for satisfiability. In International Conference on Computer-

Aided Design, pages 220–227, November 1996.
[MSS97] J. P. Marques-Silva and K. A. Sakallah. Robust search algorithms for

test pattern generation. In Fault-Tolerant Computinig Symposium,
pages 152–161, June 1997.

[MSS99] J. P. Marques-Silva and K. A. Sakallah. GRASP-A search algorithm
for propositional satisfiability. IEEE Transactions on Computers,
48(5):506–521, May 1999.

Chapter 4. CDCL Solvers 149

[MSS00] J. P. Marques-Silva and K. A. Sakallah. Invited tutorial: Boolean
satisfiability algorithms and applications in electronic design automa-
tion. In Computer Aided Verification, page 3, 2000.

[Nad02] A. Nadel. Backtrack search algorithms for propositional logic satisfi-
ability: Review and innovations. Master’s thesis, Hebrew University
of Jerusalem, November 2002.

[PD07] K. Pipatsrisawat and A. Darwiche. A lightweight component caching
scheme for satisfiability solvers. In International Conference in The-

ory and Applications of Satisfiability Testing, pages 294–299, 2007.
[PH02] S. Pilarski and G. Hu. SAT with partial clauses and back-leaps. In

Design Automation Conference, pages 743–746, 2002.
[PP80] L. Moniz Pereira and A. Porto. Selective bachtracking for logic pro-

grams. In Conference on Automated Deduction, pages 306–317, 1980.
[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.

Computational Intelligence, 9:268–299, 1993.
[Rya04] L. Ryan. Efficient algorithms for clause-learning SAT solvers. Mas-

ter’s thesis, Simon Fraser University, February 2004.
[SS77] R. M. Stallman and G. J. Sussman. Forward reasoning and

dependency-directed backtracking in a system for computer-aided
circuit analysis. Artificial Intelligence, 9(2):135–196, 1977.

[Str01] O. Strichman. Pruning techniques for the SAT-based bounded model
checking problem. In Advanced Research Working Conference on

Correct Hardware Design and Verification Methods, pages 58–70,
2001.

[Tar74] R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal

on Computing, 1974.
[Zha97] H. Zhang. SATO: An efficient propositional prover. In Conference

on Automated Deduction, pages 272–275, July 1997.
[Zha03] L. Zhang. Searching the Truth: Techniques for Satisfiability of

Boolean Formulas. PhD thesis, Princeton University, June 2003.
[ZM88] R. Zabih and D. A. McAllester. A rearrangement search strategy for

determining propositional satisfiability. In National Conference on

Artificial Intelligence, pages 155–160, July 1988.
[ZM02] L. Zhang and S. Malik. Conflict driven learning in a quanti-

fied Boolean satisfiability solver. In International Conference on

Computer-Aided Design, pages 442–449, 2002.
[ZM03] L. Zhang and S. Malik. Validating SAT solvers using an independent

resolution-based checker: Practical implementations and other appli-
cations. In Design, Automation and Testing in Europe Conference,
pages 10880–10885, 2003.

[ZMMM01] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient
conflict driven learning in Boolean satisfiability solver. In Interna-

tional Conference on Computer-Aided Design, pages 279–285, 2001.
[ZS00] H. Zhang and M. Stickel. Implementing the Davis-Putnam method.

In I. Gent, H. van Maaren, and T. Walsh, editors, SAT 2000, pages
309–326. IOS Press, 2000.

	CDCL Solvers

