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Abstract
∎ We report here on specific ways in which synaptic long-
term potentiation (LTP) affects the response selectivity of pri-
mary sensory cortical cells. LTP increases synaptic efficacy by
incremental "steps," up to a "ceiling" at which additional bursts
of afferent stimulation cause no further potentiation. Endoge-
nous and exogenous agents have been shown to modulate
these two paramenters of LTP, raising the question of the
functional implications associated with the sizes of steps and
ceiling. We provide an analytical treatment of the effects of
these two physiological LTP parameters on the behavior of
simulated olfactory (piriform) cortex target cells in response

INTRODUCTION

Long-term potentiation (LTP) has been shown to occur
in hippocampal archicortex (Bliss & Lomo, 1973), olfac-
tory paleocortex (Jung, Larson, & Lynch, 1990) and neo-
cortex (Kanter & Haberly, 1990; Iriki, Pavlides, Keller, &
Asanuma, 1989; Kirkwood & Bear, 1994). Given that it ap-
pears to be a common characteristic of cortical architec-
tures, the question arises as to the effects that LTP might
have on cortical processing of sensory signals. Input to
a network selectively activates some target cells more
than others, on the basis of connectivity of the active
inputs with the targets. Afferent stimulation patterns are
"similar" to the extent that they share axons, which,
when repetitively activated, can potentiate their target
synapses. With repeated training, synapses shared among
different inputs become more potentiated than unshared
synapses. After training on a number of similar instances,
this differential potentiation of shared synapses will
cause the target cell that responds to one such instance
to respond to others as well, since the contribution from
the (familiar) shared, potentiated synapses will outweigh
the contributions from the (novel) unshared, weaker
synapses. With learning, then, target network responses
to similar inputs will tend to become increasingly similar
to each other. From the point of view of a given target
cell participating in these responses, its receptive field is
broadening, since it is responding after potentiation to
inputs that it would not have responded to before.

It is worth noting that if these responses are the
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to a range of inputs. A target cell's receptive field, i.e., the set
of input patterns to which the cell responds, is broadened with
potentiation of the cell's synapses, and is broadened more
when the LTP step size is smaller, and when the LTP ceiling is
higher. Moreover, the effects of step size and ceiling interact,
and their joint relationship to receptive field breadth is non-
linear. Values of step size and ceiling are identified that balance
the tradeoff between learning rate and receptive field breadth
for particular sensory recognition tasks, and these model values
are compared to corresponding known and inferred physi-
ological values. ∎

representations of the inputs passed to other brain re-
gions, the inputs will be treated as though they were
more similar than they actually are; an effective learned
broadening of the generalization gradient around inputs
(reminiscent of the well-known psychological effects of
input space distortion (Shepard, 1987) and categorical
perception (Smith & Medin, 1981; Harnad, 1987)). How-
ever, the sensory and psychological interpretations of
neural responses are remote, and it is unknown how
generalization of cell population responses may be re-
lated to generalization of the organism's overall behav-
ioral response to a stimulus. A neuron's response can be
described more neutrally in terms of its receptive field,
defined simply as the set of inputs to which it responds.
For cell fields receiving topographic afferents, such as
layer IV of primary visual, auditory and somatosensory
cortices, the receptive field of a neuron has the addi-
tional property of preserving adjacency relations among
the stimuli to which it responds. Nonetheless the no-
tion of receptive field is equally well defined in non-
topographic populations such as olfactory cortex (Jiang
& Holley, 1992; Ezeh, Wellis, & Scott, 1993). Slight
changes to an input will still tend to recruit responses
from many of the same target cells, whereas very differ-
ent inputs will not; the receptive field of those target
cells thus includes the former inputs and excludes the
latter.

In this paper we provide a theoretical treatment of the
LTP parameters of step and ceiling in the context of a
target layer of cortical pyramidal cells, analytically deriv-
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ing relationships between these biological parameters
and their receptive field characteristics.

Input and Response
Physiological and Anatomical Characteristics
Modeled
Table 1 lists the physiological and anatomical features
incorporated into the simulations used. Points 1-3 in the
table constitute induction rules for LTP: the familiar
"Hebbian" requirement for coactivity of afferent and tar-
get, together with the important extra constraint that
most cell spiking will not induce potentiation: rather, the
significantly higher (NMDA receptor) threshold must be
exceeded for potentiation to be induced. The relatively
stringent requirements for LTP induction ensure that
most synapses do not become potentiated under most
circumstances despite continuous cell spiking; rather,
burst activity must occur in the presence of weakened

Table 1. Physiological and Anatomical Features
Incorporated into LTP Parameter Simulations
LTP induction

1. Potentiation requires coactivity of afferent and target
2. Potentiation requires exceeding a threshold above that

of the spiking threshold
3. Potentiation can be elicited by a single induction

episode

LTP increment rule
4. Equally sized increments in efficacy occur in response

to each induction episode
5. Increment size can be manipulated pharmacologically
6. Increment size can be manipulated endogenously (by

NE, Ach)

LTP ceiling rule
7. After a fixed number of increments, further

stimulation offers almost no increase in efficacy
8. Ceiling level can be manipulated pharmacologically
9. Ceiling level can be manipulated endogenously

(by 5HT)

Local circuit anatomy
10. Sparse connectivity of afferents to targets
11. No apparent topography (e.g., LOT to olfactory cortex)
12. Short electrotonic length of excitatory cell dendrites

Time courses
13. Inputs arrive within relative synchrony with theta
14. Once consolidated, potentiation is not reversible

inhibition of the target neurons, as occurs with theta-
burst stimulation. Numbers 4-6 and 7-9 specify the
physiological details of LTP increments and the LTP
ceiling, respectively, and their manipulation by endoge-
nous and exogenous factors. These issues will be gone
into in more detail. Items 10-12 describe the anatomies
into which the synapses undergoing potentiation are
embedded. Number 13 states the assumption, based on
both in vivo recordings of freely moving, learning ani-
mals and in vitro studies of LTP induction, that during
learning, inputs become relatively synchronized to the
theta rhythm throughout the olfactory-hippocampal
pathway.

Point 14 raises the issues of LTP reversal and LTD
(Staubli & Lynch, 1987; Larson, Xiao, & Lynch, 1993; Bear
& Malenka, 1994), neither of which is considered in the
present treatment. Any form of synaptic reduction raises
the more general question of capacity: i.e., can a system
in which synapses only increase suffice as a memory?
The obvious intuition, shared by many experimental and
computational neuroscientists, is that what goes up must
come down. It is clear that if all synapses are allowed to
increase without some form of decrease or normaliza-
tion, eventually all synapses will become saturated at
their ceiling value, thus not only preventing any further
learning, but also eliminating existing memories, since
the differences among synaptic weights were the em-
bodiment of those memories. A concomitant question
rarely asked is when such saturation will occur-this is
a question of capacity, which underlies that of synaptic
saturation: how many "memories" can be stored via sy-
naptic strengthening before saturation? In a particular
formulation, an increase-only model has been shown to
have very large capacity, which is a linear function of the
size of the network. In that model, synapses increase
without ever decreasing, and the system will thus inevi-
tably saturate, but saturation does not occur until a very
large number of memories are stored-such a large num-
ber that any reasonable lifetime of the organism would
be long over before the limit was approached (Granger,
Whitson, Larson, & Lynch, 1994). Thus the function of
any LTD mechanism might not be directly related to
capacity.

Physiological Interpretation
Consider a cortical network in which a set of input
axons makes sparse nontopographic synaptic contact
with the dendrites of a set of target cells, as in the
olfactory (piriform) cortex (Price, 1973; Haberly, 1985;
Lynch, 1986). Input activity is assumed to correspond to
the stereotypical physiological activity found throughout
the olfactory corticohippocampal pathway during learn-
ing and exploration (Macrides, 1975; Hill, 1978; Otto,
Eichenbaum, Weiner, & Wible, 1991), consisting of brief
relatively synchronized bursts of activity, on a sparse
subset of the input lines. Inputs can thus be depicted as
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Figure 1. Each cell has N po-
tential synaptic locations and
S actual synapses. Inputs con-
sist of some active lines
unique to one pattern or the
other (NA and NB), some lines
that are shared between both
patterns (Nshar), and some
lines that do not signify either
pattern (Nneither ). Noise
( Inoise) displaces some of the
inputs in these shared and pat-
tern-specific regions to either
the other pattern's region or
somewhere else along the
cell. Note that these regions
are depicted as contiguous for
convenience only-inputs rep-
resenting one pattern or the
other may be distributed any-
where along the cell.

a set of active input lines arriving at target cells as in
Figure 1. In general, inputs will be spatially distributed
across the input lines. For simplicity, the illustrations
here depict inputs consisting primarily of contiguous
axons, as they would be if generated by stimulating
electrodes rather than by environmental input; in the
mathematics, no assumptions are made about axon dis-
tribution. Pictured are two distinct inputs, A and B, which
can be presumed to be generated by two different stimu-
lating electrodes. The spatial pattern of activation gener-
ated by a given electrode will differentially activate the
target cells, as a function of the connectivity of the
inputs to the cells. In particular, cells having more syn-
apses with those axons active in input pattern A will be
more depolarized in response to that input. The figure
illustrates two target cells, one of which is better con-
nected to the active axons in pattern A (CA), and one to
the active inputs in B (CB). Thus cell CA will be more
depolarized in response to input A, via activation of
stimulating electrode A, and vice versa for cell CB.

Note that although the responses of only two cells to
two different input patterns are considered in this ex-
periment, Figure 2 illustrates how this analysis treats one
aspect of a larger distributed representation. In general,
we assume that the relative activity of primary respond-
ing cells is significant, as in a patch of laterally inhibited
cells where the cells with the highest activation will be
the only ones to fire (Coultrip, Granger, & Lynch, 1992).
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If these two inputs always occurred in the same way,
then LTP simply causes the depolarization from the cells
to become stronger, and the response to become more
reliable. If, however, we make the more realistic assump-
tion that the inputs are "noisy" in that some variation
occurs from presentation to presentation, then LTP has
a more complex effect, and its physiological induction
parameters come into play in a nonintuitive fashion. This
random variation within an input consists of prob-
abilistic activation of afferents with components of omis-
sion and of commission: some synapses stimulated by
electrode A will fail to become active on any given trial,
and some synapses not stimulated by electrode A will
spontaneously become active. Noise affects the reliabil-
ity of the target cell response, and the step increment
and ceiling level of potentiation during LTP both modu-
late the extent of this effect.

Geometric Interpretation
Inputs of this kind can be viewed as points or vectors
in a space whose dimensionality is that of the total
number of input lines. If every input made synaptic
contact with every target cell, then the dendrites of
target cells could be viewed as vectors in that same
space. Actual targets correspond to vectors in a subspace
of the input space, dictated by the sparseness of connec-
tivity of the inputs with the target. Figure 3 illustrates the
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Figure 2. The response of a
layer of cells to two different
input patterns. Within each
patch (represented as bands
within each layer), lateral inhi-
bition ensures that only one
cell (or a few cells) will fire.
However, the response of the
entire layer is distributed
among many such patches. In
some patches (such as the
one in the center), the same
cell will fire for both patterns.
However, in other patches, dif-
ferent cells within each patch
will fire for different patterns.
The present study analyzes
how parameters of LTP induc-
tion come to affect cell re-
sponses within patches that
differentiate among patterns.

qualitative relationships among inputs and targets as
mediated by synaptic connections. Depicted are the rela-
tive locations of two sets of inputs and two target cells,
as projected onto the two-dimensional figure plane.
Shown are two inputs, A and B, and their noisy variants

corresponding to the random variation
of the inputs as described above.

Each input line corresponds to a dimension in the
multidimensional input space; the large number of di-
mensions is necessarily reduced to just the two dimen-
sions of the planar figure in this projection. Actual
inputs are high-dimensional and thus the neighborhood
of proximity is intuitively quite different from the case
in two dimensions. Nonetheless, the figure captures
some of the salient elements of the cases to be analyzed
here.

A given cell (e.g., CA ) can "see" only that portion of
active inputs to which the cell has synaptic connections.
The portion of the input seen by the cell is (approxi-
mately) the projection of the input vector into the
lower-dimensional subspace of the cell vector. In the
figure, the projection of an input x onto a cell C is the
subset of the cell vector determined by the orthogonal
"shadow" of that input onto the cell, (x,C). The mag-
nitude of response of a given cell to an input is the
length of that projection vector. Intuitively, similar inputs
in Figure I correspond to similar or "close" vectors in
Figure 3. The closer an input vector is to a cell vector,
the larger the projection of the former onto the latter,
and the larger the magnitude of the cell response. The
line denotes the set of inputs whose

projection onto cell CA is equal to that for cell C B , i.e.,
inputs evoking equal-sized responses from both target
cells. Inputs above the line will evoke a larger response
from cell

C

Bthan from CA,and vice versa for inputs
below the line.

The inputs in the figure have been placed such that
most variants of A tend to generate larger responses (i.e.,
have longer orthogonal projections onto) in cell A than
cell B, and vice versa for variants of B. In terms of
physical characteristics, variants of A are much more
similar to each other than any of them are to variants of
B. Thus even a quite noisy or distorted version of A
cannot be confused as being a B on the basis of physical
characteristics. Nonetheless, the only internal "repre-
sentation" of the inputs that is possible in this cell popu-
lation is the activity trace of those cells. In the figure it
can be seen that it is possible for the cells to "mistake"
one for the other, i.e., for almost all of the variants of A,

variants of A, the reverse is true: cell CB will respond
more strongly than CA since those variants are closer to
the CB vector. Misclassifications or errors of this kind
occur as a function of the "fit" between the types of
inputs that occur and the placement (connectivity) of
cells in the input space.

It will be shown that

I . LTP-based learning broadens the radius of the effec-
tive receptive field around inputs, such that noisy ver-
sions of the input that fall within that radius will he
correctly responded to after learning.
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spatial representations of four
different inputs to the net-
work. If there are N afferents,
then inputs are points in N-
dimensional space where
each point's value along any
particular dimension depends
on whether that afferent is ac-
tive or not. The activation
level of a cell is proportional
to the projection of its input
onto the vector representation
of the cell itself. [For example,

is the projection of

. has a larger projection

error, therefore, is the chance
of this situation happening.
Point , however, has a
greater projection onto the
cell on which B inputs were
trained, so the network will
perform a correct classifica-
tion. As more inputs are pre-
sented to a cell, the cell will
reduce its angle from the in-
puts by increasing its value
along those dimensions com-
mon to both its synapse locations and the active afferents. Both the size of each increase, e, and the minimum and maximum value of a cell
along any dimension where a synapse is present, wO and wm , are global parameters of the network (step and ceiling size). Note: Two aspects
of this diagram may be potentially misleading, but are necessary to visualize the spatial representation. First, all inputs from both patterns are ac-
tually the same distance from the origin. Here we see only a two-dimensional slice of the input space, so inputs appear to be of different
lengths. Second, the activation of a cell is the inner product of the synaptic weights and the input, but here we instead show the inputs' projec-
tion onto each cell. Projection can also be used to compare cell activations as long as the cells' vector representations are the same length. Al-
though this is only approximately the case in the model, projection is much easier to visualize in this diagram than inner product.

2. The breadth of the receptive field is inversely re-

lated to the LTP increment (step size).
3. The breadth of the receptive field is proportional

to the distance from naive to saturated (ceiling) synaptic
weights.

Theoretical Treatment

The target cortical network is assumed to have N affer-

ent input lines making S
with the dendrites of each of M target cells. The naive
initial synaptic efficacy (weight) of each synapse is wp.
Input stimuli consist of I of the input lines being active
at a given time. We consider the case of two distinct
groups of inputs, corresponding to the variants of A and
B as above, as depicted in Figure 1. Formally, these
groups are defined such that each variant of input A

onto cell CB than cell CA, so it
is mistakenly associated with
pattern B despite the fact that
cell CA was trained on inputs
more similar to

consists of the conjoint activation of three subsets of

As and Bs, and random noisy inputs
consists of a fixed number I of active afferents, such that

random deletion of
activation of
"region" corresponds to the part of a cell that may
contact a particular set of afferents. For instance, the

with the shared region of each cell, also depicted in
Figure 1.

The sparse random connectivity of the input lines to
the target cells causes specific inputs to differentially
activate different targets, as a function of the fit between

the I active input lines (out of the total N lines) and the
S synapses present on a target dendrite. Before any learn-
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ing takes place, the response of a cell to a particular

that contact the cell, i.e., the number of active synapses
on this cell for this input. The probability that a equals
a given value, i, follows the hypergeometric distribution:

(1)

The expected value and variance of a are as follows:

(3)

(2)

When the variance is sufficiently large, the hypergeomet-
ric distribution can be approximated by the normal
distribution with the same mean and variance

the cell that responds most strongly to it (neglecting
ties) among the cells that we are considering. We wisl
to find the mean and variance of the activation of th4
cell that most strongly respond to this input. We there
fore seek the point z at which the cumulative distribu
tion function of the normal distribution reaches thi
value of M/(M + 1), where M is the total number o
potential target cells:

[For instance, if there are 10 cells (M = 10), we find the
point where
normal curve to the left of z represents 91% of the
possible values of a. Then, the expected maximally re-
sponding a value will approximately be

(5)
(Note that this is an approximation because we arc using
the normal approximation to the hypergeometric distri-
bution.) This target cell activation is altered with poten-
tiation. The mean and variance of the activation, after
several potentiation episodes, depend on the LTP step

potentiation,
i dentifies the relations between these variables.

Estimation of Mean and Standard Deviation of Cell
Activation after Potentiation
Every time an input is presented to a cell, the weights
of activated synapses are increased by c. We will com-
pare the differential effects of using different values of

this step size. To make the effects comparable, we calcu-
late cell activation after training up to a given equal level
regardless of step size, i.e., each cell receives
training trials. We now wish to find the mean and vari-
ance of the activation that will occur in each of the two
target cells (A and B) in response to either one of the
inputs (e.g., A). This will enable calculation of the prob-
ability of a "correct" response, that is, the probability that
the A cell will respond to an input that is a variant of A
more than the B cell will, and vice versa. For the pur-
poses of this analysis, we make the simplifying constraint
that the cell that responds most strongly to the first
(noisy) version of A is trained on all subsequent noisy
versions of A, and likewise a distinct target cell is trained
on input B and its noisy variations. Figure 5 (whose
details are discussed later) compares the empirical
and theoretical performance of cells trained under our
simplified paradigm versus cells trained under a strict
winner-take-all unsupervised paradigm. Although in the
latter case some pattern A inputs will potentiate the cell
that first responds to a B input, and vice versa, under low
to moderate noise conditions the difference between
the two paradigms is not large, and for the qualitative
conclusions reached in this paper, not important.

As before, each cell has N "positions," each of which
may either receive a synaptic contact from an input line
or not. (Since connectivity is sparse, many of the posi-
tions receive no contact.) We then divide the positions
into three sets:
that coincide with the shared input lines,
with the input lines of the pattern that will train this cell,
and
will be trained only by the portion of the
lines whose activity is displaced into this region. (All
equations use the size of these sets rather than their
membership, so the name of the set and its cardinality
may be used interchangeably.) From each of these sets,
we wish to find the mean contribution to a cell's activa-
tion during training, and the mean and variance of the
contribution given a test input once training has been
completed. From these values, Appendix A derives the
probability that a given cell will correctly respond to a
version of an input similar to that on which it was
trained:

(6)
where X and Y are random variables for the activation
of a cell in response to a version of the input on which
it was trained versus a version of inputs on which it was
not trained, respectively, and
tribution function of the normal distribution (which
approximates each cell's activation). The following equa-
tions show the dependency of this probability on the
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values of the step size
potentiation

Without loss of generality, we can estimate the mean
and variance of a cell tested on (noisy versions of) the
same pattern as it has been trained on, by estimating the
mean and variance of a cell trained on noisy variants of
A (a "pattern A" input) and tested on one such variant
of A. Likewise, we can estimate the mean and variance
of a cell's response to a different pattern than it was
trained on by estimating the mean and variance of a cell
trained on pattern B inputs but tested on a pattern A
input. Let
potentiation,
set of synapses (e.g., a shared or pattern A-specific re-
gion) given a test input (e.g.,
synapses in the shared region),
ability of a particular value of
formulas for this and the following two terms),
the percentage of synapses modified within a set on a
single training input pattern presentation,
expected number of active input lines to a region during
training (once noise has deleted some of the active
inputs in the
a region trained and tested on pattern A inputs, and
be the activation level of a region trained on pattern B
inputs and tested on a pattern A input. Then,

(7)

for the shared, pattern B, and noise sets, and
(8)

Likewise, we can calculate the variance:

and
(10)

The equations for
those for

(11)
and

(12)
except we further divide the cell into four regions by
separating the noise region into regions B and neither
Since we are looking at a cell that is trained on one
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pattern and tested on another, it helps to separate the
cell into the region that gets the inputs shared by both
patterns, the region that gets most of the pattern-specific
training inputs (B), the region that gets most of the
pattern-specific testing inputs (A), and the region that
lies outside both pattern A and pattern B inputs except
for noise. [These distinct "regions" are assumed to be
distributed across the dendrite, since the inputs have no
topographic organization. Moreover, as mentioned ear-
lier, for the short electrotonic dendritic lengths identified
in many modeling studies (Rall et al., 1992) the proximal
vs distal location of specific inputs can be neglected.]
When calculating the probability of active input syn-
apses,
tested on A, the reversal of the number of input lines
specific to each pattern must be taken into account (as
discussed in Appendix A).

Errors as a Function of Step and Ceiling
Figure 4 shows the effect of step size e on the probability
of an error, i.e., the probability of the target network
misrepresenting an A as a B or vice versa. Shown are both
analytical results based on the above equations, and
empirical results based on tests of a network implement-
ing the described algorithm. It can be seen that the
empirical results parallel the analytical results (although
actual errors are slightly higher than analytical predic-
tions for some large step sizes). Performance improves
(error decreases) with decreasing step size. It is worth
noting that the improvement in performance falls off
once the step size reaches roughly 15 to 20% of the
distance from the naive to the ceiling weight, i.e., the
step size is such that there are roughly seven steps
before the ceiling is reached.

A similar result is obtained for the recognition perfor-
mance of the network as a function of the ceiling, i.e.,
the ratio of the maximal potentiated strength of a syn-
apse to its naive strength (Fig. 5). Again, empirical and
analytical results agree relatively closely; performance
improves (errors decrease) as the ceiling increases. As
before, the effect is highly nonlinear, and there is an
obvious inflection point at which increases to the ceiling
offer diminishing returns-there is little performance
gained in raising the ceilings to a level more than three
or four times larger than the naive synaptic strength.

Figure 6 shows the probability of error for a fixed step
and ceiling
function of the difficulty of the discrimination between
the two inputs A and B. The more the two inputs share
input lines, the more similar they are, and the more
difficult it is to discriminate between them. (This corre-
sponds to the points becoming closer and closer to-
gether in Figure 3.) As expected, more similar inputs
yield higher probability of error. The effect interacts with
the amount of random noise in the signal; if noise is
restricted to only 10% of the input signal, error prob-
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Lions and experiment observe
the relative responses of two
cells in a net of size twenty
(M = 20). Each cell has 300
synapses out of 1000 poten-
tial locations (N = 1000, S =
300) and is trained on inputs
that have 100 active lines
each (I = 100). Input patterns
are constructed from 30 ac-
tive inputs lines common to
both patterns and 70 unique
to each
70). Each training and testing
input to the net is distorted
by randomly displacing 40 in-
put lines from meaningful po-
sitions
of ceiling to naive synaptic
weight
of step size are less notice-
able as this ratio decreases.
Each cell is trained as many
times as the reciprocal of the
step size times the difference
between the ceiling and naive
weights
mental results are obtained by
determining the results of
training and testing five sets
of 20 nets at each step size. AI
ter training, each net is tested
on 200 inputs from each pat-
tern. The error represents the
percentage of noisy inputs
that produce a higher activa-
tion level in the cell not
trained on that input's pattern
than in the cell trained on
that input's pattern. Error bars
reflect the standard error
among the average error prob-
ability within each of the five sets. Although dividing 100 test nets into five sets of 20 is arbitrary, we obtain similar error results from other
divisions of the nets.

ability remains below 0. 1 even when the two inputs
overlap by almost 50%.

The effect of noise on the inputs, illustrated in Figure
7, exhibits a similar pattern. The graph shows the error
probability for given amounts of noise, given two inputs
that are difficult to discriminate (50% overlap). This ef-
fect interacts strongly with the ceiling size: for very low
ceilings, noise dramatically impairs performance, but for
higher ceilings, noise has less effect. It can be seen that
increasing the ceiling past a certain point has diminish-
ing returns. (To illustrate the asymptotic limit of the ef-
fect of the ceiling, the unrealistic ceiling value of 10,000
times the naive weight is included for comparison.)

Figure 8 summarizes some of these findings. Shown
are percentage changes in receptive field radii corrc-

sponding to various values of )-.T, step size and ceiling.
Changes to the ceiling have a much larger relative im-
pact that changes to step size. Decreases in step size
improve performance only by a few tenths of a percent;
increases in ceiling size can improve performance by
tens of percents. In the figure, receptive field radius is
shown for three different step sizes and for four different
ceiling heights, given a fixed error probability of 0.25 as
discussed earlier. It can be seen that decreasing the step
size barely expands the field radius, whereas increasing
the ceiling expands the field by a much larger relative
degree. The diminishing returns afforded by increased
ceiling are also clear here: after increasing the LTP ceil-
ing by a factor of 3, it does little good to increase it
further at this error level.
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Figure 5. Predicted error and
experimental results versus
ceiling to naive ratio

the simplified experiment,
each cell is trained on 10 in-
puts from the pattern it first
prefers. In the strict winner-
take-all experiment each cell
is trained on inputs for which
it has the highest activation in
the patch. In both experi-
ments the step size is one-
tenth the difference between
the ceiling and naive weights

calculated in the same man-
ner as described in the pre-
vious figure.

DISCUSSION

Small LTP step size, then, yields two effects, one obvious
and one less so: (1) many such steps must be taken to
achieve a given level of potentiation, and (2) after learn-
ing, the target cell population will come to respond
correctly to a somewhat wider range of inputs, effec-
tively "recognizing" even noisy versions of inputs on
which it has been trained. This latter effect corresponds
to the receptive field of the target cells. The increment
size and LTP ceiling each affect the receptive field
breadth, and hence affect the restrictiveness of the re-
sponse of the cell thus trained. If an input A generates a
particular cortical response, how similar must input A'
be to A to generate that same cortical response? If the
LTP step is larger, or the ceiling lower, then the target
receptive field is narrowed, and thus A must be very
similar to A' to generate the same response. If the LTP

step is smaller or the ceiling higher, then the receptive
field is broadened, and the required similarity between
A and A' is reduced.

The effects of both step and ceiling are quite non-
linear, and a tradeoff between them can be identified.
Increases to ceiling and decreases to step size both
broaden receptive fields. Higher ceilings and smaller step
sizes share the cost that they cause maximal potentiation
to take longer to reach. Thus presumably training will be
more protracted as ceiling is raised and step size de-
creased. The nonlinearities in the analysis provide inflec-
tion points that can be chosen to optimize this tradeoff.
From the graphs it can be seen that for the parameters
used in the simulation (such as connectivity and input
size), the chosen ceiling size should be roughly 2 to 2.5
times larger than naive synaptic strengths, and the cho-
sen step size should traverse roughly one-seventh of the
distance from naive to maximal weight with each poten-
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Figure 6. Predicted prob-
ability of error given various
degrees of similarity between
the two patterns. The predic-
tions are for two cells which
have 300 synapses out of
1000 potential locations each
(S = 300, N = 1000). There
are 100 active inputs (I =
100), Israr of which are com-
mon to both patterns and the
rest of which are unique to
each pattern

predictions for a different
level of noise,
ing to naive ratio
2, and the step size is one-
tenth the difference between
the ceiling and naive weights

is trained on 10 examples of
one pattern.

tiation episode. It is worth noting that these analytical
results do not differ greatly from values experimentally
identified in in vitro brain slices (Larson & Lynch, 1986;
Larson, Wong, & Lynch, 1986).

Pharmacological agents that increase the step size and
ceiling of LTP (Arai & Lynch, 1992) have been shown to
affect the learning rate of animals to which these agents
have been administered (Granger et al., 1993; Staubli,
Rogers, & Lynch, 1994). From the findings presented
here, it can be predicted that the resulting learned infor-
mation will be formed with slightly more restrictive
receptive fields than if learned via training with unen-
hanced step sizes. A larger effect should obtain for in-
crease in ceiling size. That is, increase in LTP ceiling
should broaden the receptive fields surrounding the
learned items, and this effect will be large enough to
overwhelm effects that may be due to step size. Thus if
both step size and ceiling are increased by a drug, it is

predicted that the resulting target cell receptive fields
will be broadened compared to learning that occurs
without the drug. The behavioral consequences of this
are unknown, although it might be loosely speculated
that operational generalization gradients around learned
stimuli may correspond to the receptive field sizes of the
target cortical cells.

Convergent anatomical and physiological evidence
suggests that step size and ceiling may be readily con-
trolled endogenously via the effects of ascending modu-
latory systems on their GABA interneuron targets.
Immunohistochemical work has indicated that ascend-
ing serotonergic (5HT) fibers preferentially terminate on
GABAb interneurons (Seress et al., 1993) and pharma-
cological manipulation of the 5HT system suggests that
its effect on GABAb cell activity is facilitatory. Blockade
of the GABAb-mediated long hyperpolarization by
forskolin has a dramatic effect on LTP: the magnitude of
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Figure 7. Predicted prob-
ability of error versus noise.
The predictions are once
again for two cells, with N =
1000, S = 300, and I = 100.
There are 50 input lines simi-
lar to both patterns and 50
unique to each

the predictions for a different
ratio between the ceiling and
the naive synaptic weight. The

sents an "ideal" synapse,
which has negligible initial
weight. All predictions are for
cells trained 10 times with

the maximal LTP nearly doubles (Arai & Lynch, 1992).
The mechanism underlying this effect is not known, but
it is reasonable to assume that the extra hyperpolariza-
tion due to 5HT-mediated GABAb enhancement will ab-
breviate any NMDA currents activated during a burst,
since the duration of those currents are dependent on
ongoing depolarization. Calcium is the trigger for LTP
induction, and shortening of NMDA receptor opening
would lessen the amount of the
spine, possibly reducing the amount of LTP that can be
induced. By this same reasoning, suppression of the 5HT
system should allow more LTP to be induced, and this
has recently been shown using the selective 5HT 3 inhibi-
tor Ondansetron (Staubli, personal communication). If
this modulator does raise the LTP ceiling, it is predicted
that the resulting learning will exhibit broader receptive
fields than comparable learning without the modulator.

Just as the 5HT system preferentially targets GABAb
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interneurons, there is evidence that the ascending norad-
renergic and cholinergic (NE and ACh) systems termi-
nate on GABAa interneurons (Toth, Borhegyi, & Freund,
1993; Miettinen & Freund, 1992; Seress et al., 1993)
enabling their modulation of GABAa-mediated fast IPSPs.
This modulation should affect IPSP strength and may
affect the strength or the latency of the refractory period
for the GABAa synapse (Larson et al., 1986; Mott & Lewis,
1991). If the IPSP is strengthened, the amount of LTP that
can be induced per step should be reduced; if the IPSP
is weakened, more UP should be able to be induced
per induction episode; i.e., the LTP step size would be
increased. A modulator weakening the IPSP should
thus enable faster learning, with the side effect of
slightly narrowing the receptive fields resulting from
the training.

Finally, it should be noted that the size of the UP
ceiling varies in the same neuron across different den-



Figure 8. The radius of each concentric circle graphically repre-
sents the amount of generalization a network will tolerate for a
given set of LTP parameters. Tolerance in (A) and (B) is arbitrarily
set at 25%, i.e., we allow one-quarter of the examples that a cell pre-
fers to belong to a pattern that the cell was not trained on. (A) Ef-
feet of step size

dritic locii (Woodward, Chiaia, Teyler, Leong, & Coull,
1990; Arai, Silberg, & Lynch, 1995; Kolta, Larson, & Lynch,
1995) and it appears that this may hold true for the step
size as well (Arai et al., 1995). This raises the possibility
that networks form multiple representations of noisy
inputs with some being restrictive and others broad in
their receptive fields. Such a system, if coupled with
variations in the stability of potentiation, could allow for
the gradual sharpening of categories.

APPENDIX A
Activation of a Cell Trained and Tested on
Pattern A Inputs
We divide all N potential locations of the cell (and input
lines) into three sets:
both patterns A and B inputs,
specific to pattern A inputs, and
correspond to the remainder:

(13)

Next, we calculate the expected number of active input
lines to each set of potential synaptic locations. For the
shared and pattern A sets,
will equal the number of positions in that set (corre-
sponding to a noiseless input pattern) less a proportional
amount of positions that will be displaced by noise:

(1-1)

(15)

winning cell (the cell with the highest activation) for
some noisy input, then we can assume that on average
the shared and pattern A regions of that cell will have a
slightly higher density of synapses than the remainder of
the cell. Since a certain proportion of the entire input
comes from the shared and pattern A input lines, an
equal proportion of the active synapses must come from
those sets. Where noise displaces the activity of some of
the input lines to other regions, we can only assume that
there is the same density of synapses as the remainder
of the cell. In other words, for at least some of the
positions in the shared and pattern A sets, we expect a
higher probability of a synapse existing at any particular
position than in an average cell, since this cell did pro-
duce a higher activation on a (noisy) version of the
pattern than did other cells. The remainder of the cell
will have a slightly lower probability of a synapse exist-
ing at any particular position to compensate. We can
calculate the expected number of synapses (E[S]) in
each of these regions as follows:

(16)

(17)

(18)

To calculate the mean and variance of the activation of
a trained cell on an input, we can calculate the means
and variances of the contribution of each region. If X is
the activation of a trained cell on an input, then
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Since dependencies between the contributions of each
region are not significant, we consider the contributions
independent, and thus:

(20)

In presenting the following method of estimating vari-
ance, we will look at only one region at a time.
stands for
for which we are calculating variance. The same applies
to
on an input, the weight of a certain number of synapses
is increased. For simplicity, we will assume that an aver-
age number,
training input pattern presentation (the mean number of
active synapses in the set). We can think of weight
increments as balls and synapses as bins: every time we
train the cell, we randomly throw
bins. At first, some bins will be empty while others will
contain a widely varying amount of balls. As we throw
more balls in, however, the relative number of balls in
each bin will tend to even out.

We calculate
ric distribution of
comes out of

(21)

If the learning step size is large relative to the difference
between the ceiling and naive weight
then each of those balls represents a larger weight incre-
ment and we will throw in fewer of them. This will
prevent us from getting to the point of having nearly
identical weights at each synapse. However, if the step
size is small, we will have more chance to even out the
weights. Since the probability of an active input line in
any position within a region is equal, the lower the
variance among the synaptic weights, the lower the
variance in that region's contribution to the activation
level.

When we determine the activation of a cell on a test
input pattern, we sum the weights of all active synapses.
If there are
trained on

random variable, which represents whether or not a
certain synapse was trained at a given training step.

The mean activation of a hypergeometric distribution
is the product of the number of trials and the probability
of success. In our case, we must scale the mean by
dividing it by the number of steps, since each success
represents a weight increment of only
we must add any initial weight the synapses already had:

(22)
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where
being active within a region. Note that the mean activa-
tion does not depend on the step size according to this
equation. (A large step size actually does have a very
slight effect in terms of causing a few synapses to hit
their ceiling weight early, but we can disregard this.)

The variance can be calculated as follows:

(23)

and once again we scale according to the actual size of
each weight increment. Note that Eq. (23) depends only
on
affects only the mean activation, not the variance.

We now have the mean and variance of a cell's acti-
vation given
test input. To estimate the mean and variance of the cell
across all possible inputs within the category, we must
find the probability of different values of
bine variances according to those probabilities. This
gives us a more accurate prediction than simply using

synapses in each region contributes largely to the vari-
ation of the overall activation of the cell.

Let
distribution where
according to the above formulas where

apses is i, which follows the hypergeometric distribu-
tion:

(24)

We want to calculate the mean and standard deviation
of the random variable

(25)

Since
(26)

and

(27)

and we know the mean and variance of each
can make the calculation. Note that although we do not

Volume 8, Number 4



have an explicit formula for
formula for variance:

(28)
We have now incorporated two significant sources of
variation into our calculations of a region's contribution
to a cell's activation: varying synaptic weights and vary-
ing input line activation. These computations are identi-
cal to the ones for a cell trained and tested on pattern
B inputs, except that the computations for the pattern
A- and B-specific regions need to be switched ac-
cordingly.

Along with predictions for a cell trained on a different
pattern than the test pattern (namely, trained on pattern
B inputs and tested on a pattern A input), we can esti-
mate the likelihood of an input generating a higher
activation for a cell trained on inputs of the same pattern
as opposed to a cell trained on inputs of a different
pattern.

Activation of a Cell Trained on Pattern B Inputs
and Tested on a Pattern A Input
Suppose a cell has been trained on pattern B inputs and
is tested on a pattern A input. Although we can expect
the same behavior in the region of shared input lines,
the only lines activating the pattern B region of the cell
will be the result of noise in the pattern A test input.
Likewise, the pattern A-specific input lines will synapse
onto only a certain portion of what is the noise region
of the pattern B-trained cell. Because of this, the noise
region of the cell should be divided into two parts: the
region that coincides with the pattern A-specific
positions of the test input and the region that coincides
with the positions of the test input that are part of
neither pattern A nor pattern B inputs

gions is equal
During training, the pattern B-specific positions of the

i nput will coincide with the pattern B region of the cell,
so

(29)

And the noisy lines of the training input will be divided
between the pattern A region and the remaining region
indicating neither pattern:

(30)

(31)

The expected number of synapses in the shared region

the same pattern. The mean number of synapses in the
pattern B, pattern A, and neither pattern regions will be

(34)

(33)

(32)

During testing, the number of active input lines in the
patter nAandpatternBregionsreverses.Therefore,the
calculationof

(36)

(35)

The estimation of the mean and standard deviation of
the activation of a cell trained on pattern B inputs and
tested on a pattern A input (Y) can be made according
to

(38)
(37)

Chance That an Input Will Generate a Higher
Activation for the Cell Trained on the Same
Pattern
To calculate the probability that a pattern A test input
will generate a higher activation for the pattern A-trained
cell (and similarly that a pattern B test input will gener-
ate a higher activation for the pattern B-trained cell), we
make a normal approximation for the distributions of
same pattern and different pattern cell activations. Let U
be a random variable with normal distribution
where
tested on pattern A inputs. Let V be a random variable
with normal distribution
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tested on pattern A inputs. The former mean and vari-
ance generalizes to the activation of any cell tested with
the same pattern as it was trained on, be that either
pattern A or B. Likewise, the latter mean and variance
generalize to the activation of any cell tested on a differ-
ent pattern than it was trained on.

The probability of the cell firing that was trained on
the same pattern as the test input is

(39)

We can express this in terms of the cumulative normal
distribution function:

(40)

(p) that may be incorporated into the above equa-

This probability can be visualized as the lesser volume
of the bivariate normal distribution of U and V after it
has been bisected by the U = V plane. Note that due to
the nature of the inputs (where noise displaces activity
from one region to another), there is virtually no corre-
lation between X and Y In other input paradigms, such
as purely additive noise, there may be a negative corre-
lation
tion:

	 \
p(V<~_(D	

µU - µv 	
~(6y- (ypp)2 + (y(1 - p 2)

(41)
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