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Abstract
Cognition is the action and interaction of multiple brain
regions, and these are becoming understood
computationally. Simulation and analysis has led to
derivation of a set of elemental operations that emerge
from individual and combined brain circuits, such that
each circuit contributes a particular algorithm, and pairs
and larger groups interact to compose further algorithms.
We forward the hypothesis that these operations
constitute the “instruction set” of the brain, i.e., the basic
mental operations from which all other behavioral and
cognitive operations are constructed, establishing a
unified formalism for description of specialized
operations ranging from perception and learning to
reasoning and language.

Introduction
“Computation” has come to be associated with computers,
but the field’s founders recognized throughout that what
they were actually characterizing was the nature of
thought.  There is still no formal specification for human
(or other animal) intelligence; we pursue it solely by
imitation of the existence proof, ourselves.  The fields of
neural networks and artificial intelligence, despite their
different tools, usually take as their starting point some
behavior of an organism, with the goal of identifying
candidate mechanisms that might underlie the described
behavior.  We present here the converse: by studying the
structural (anatomical) and functional (physiological)
mechanisms of particular brain structures, the operations
that emerge from them may be identified via bottom-up
analysis, without pre-specification.  The resulting
algorithms arising from brain circuit analysis often have
unforeseen characteristics, including hierarchical
structure, embedded sequences, and even hash coding
(see, e.g., Granger et al., 1994; Kilborn et al., 1996;
Shimono et al., 2000; Rodriguez et al., 2004).  The
anatomical layout of these circuits in turn establishes how
the individual operators are composed into larger routines.
It is hypothesized that these operators, comprising the
instruction set of the brain, constitute the basic mental
procedures from which all behavioral and cognitive
operations are assembled.  The resulting constructs give
rise to unexpected, and unexpectedly powerful,
approaches to complex problems ranging from perception
to higher cognition.

Telencephalic Organization
Figure 1 depicts the primary elements of the mammalian
forebrain (telencephalon), shared across all mammalian
species.  Whereas posterior cortex (PC) receives sensory
inputs (via T, dorsal thalamus), anterior cortex (AC)
produces motor outputs and, in so doing, interacts closely
with the elements of the striatal complex (S, striatum; and
P pallidum), a more ancient structure that dominates
reptilian brains.  Both anterior and posterior cortex
interact with limbic (hippocampal and amygdaloid)
structures (not shown).  Mammalian brains scale across
several orders of magnitude (from milligrams to
kilograms), yet overwhelmingly retain their structural
design characteristics.  As the ratio of brain size to body
size grows, particular allometric changes occur, defining
differences between bigger and smaller brain designs.
Figure 1b illustrates the three largest changes:
1) Connection pathways between anterior and posterior

cortex (“fasciculi”) grow large
2) Output pathways from striatal complex change

relative size: the recurrent pathway back to cortex via
thalamus increases relative to the descending motor
pathway

3) Descending output from anterior cortex to brainstem
motor systems (pyramidal tract) grows large

These changes grow disproportionately with increased
brain-body ratio, becoming notably outsized in humans.
In relatively small-brained mammals such as mice, the
primary motor area of neocortex is an adjunct to the
striatally driven motor system.  Whereas damage to motor
cortex in mice causes subtle behavioral motor
impairments, damage to motor cortex in humans causes
paralysis.  In this example of encephalization of function
(Jackson, 1925; Ferrier, 1876; Karten, 1991, Aboitiz,
1993) motor operations are increasingly ‘taken over’ by
cortex as the size of the pyramidal tract overtakes that of
the descending striatal system.  In mammals with large
brain-body ratios, the role of the striatal complex is
presumably altered to reflect that its primary inputs and
outputs are now anterior neocortex; in other words, it is
now primarily a tool or “subroutine” available for query
by anterior cortex.  Its operations then are most profitably
analyzed in light of its dual utility as organizer of
complex motor sequences (in small brained mammals)
and as informant to anterior cortex (in large brained
mammals).
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Figure 1: Telencephalic organization

Striatal  Complex
The striatal complex or basal ganglia, the primary brain
system in reptiles, is a collection of disparate but
interacting structures.  Figure 2 schematically illustrates
the primary components included in the modeling efforts
described herein.  Distinct components of the basal
ganglia exhibit different, apparently specialized designs:
matrisomes (matrix), striosomes (patch; which exist as
small ‘islands’ embedded throughout the surrounding

matrix regions), globus pallidus, pars interna and externa
(GPe and GPi; or pallidum), subthalamic nucleus (STN),
tonically active cholinergic neurons (TANs), and
substantia nigra pars compacta (SNc).  These are
connected via a set of varied neurotransmitter pathways
including GABA, glutamate (Glu), dopamine (DA),
acetylcholine (ACh), and Substance P (Sp) among others,
each affecting multiple receptor subtypes.

Figure 2.  Basal ganglia / striatal complex

The two pathways from cortex through the matrix
components of the striatal complex involve different
subpopulations of cells in matrisomes: i) MSN1 neurons
project to globus pallidus pars interna (GPi), which in turn
project to ventral thalamus and back to cortex; ii) MSN2
neurons project to globus pallidus pars externa (GPe),
which in turn projects to GPi (and thence to thalamus and
cortex).  MSN and GP projections are GABAergic,
inhibiting their targets.  Thus cortical glutamatergic
activation of MSN1 cells causes inhibition of GPi cells,
which otherwise inhibit thalamic and brainstem targets;
hence MSN1 cell activation disinhibits, or enhances,
cortical and brainstem activity.  In contrast, an extra
GABAergic link is intercalated in the pathway from
MSN2 neurons to the output stages of matrix; thus

activation of MSN2 neurons decreases activation of
cortex and of brainstem nuclei.  The pathways from
MSN1 and MSN2 neurons are thus termed “go” and
“stop,” respectively, for their opposing effects on their
ultimate motor and cortical targets.  Coördinated
operation over time of these pathways can yield a
complex combination of activated (go) and withheld
(stop) motor responses (e.g., to stand, walk, throw), or
correspondingly complex “thought” (cortical) responses.

Two primary afferents to striosomes are cortical and
ascending inputs.  The former are the same as the inputs
to matrix (despite the schematized depiction in the figure,
patch components are distributed through, and colocalized
with, matrix). Ascending inputs to patch denote “reward”
and “punishment” information and have been shown to
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up- and down-regulate dopamine from SNc (as well as
other dopaminergic sites) in response to external stimuli
carrying innate or learned valences (e.g., water to a thirsty
organism).  A cortically triggered action, followed by an
ascending DA reward signal from SNc to patch,
selectively enhances active cortical glutamatergic
synapses on both matrix and patch targets.  Patch output
back to SNc then inhibits DA response, so that increased
cortical activation of patch (via enhanced synaptic
contacts) will come to limit the DA input from SNc.  On
any given trial, then, the size of the DA signal from SNc
reflects the size of the actual ascending DA input (i.e., the
reward signal) that occurred over previous trials.  Thus
with repeated experience, adaptive changes occur in both
matrix and patch: initially-random matrix responses to a
cortical input become increasingly selected for responses
that produce reward, and initial naïve striosomal
responses will become increasingly good “predictors” of
the size of the reward expected to ensue as a result of the
action.

Tonically active cholinergic neurons (TANs)
represent a small fraction (< 5%) of the number of cells in
the striatal complex yet densely contact cells throughout
matrix; thus they likely play a modulatory role rather than

conveying specific information.  The GABAergic
inhibition of these cells by patch will come to increase for
those patch responses that lead to reward, since in these
instances the cortical drivers of these patch responses
become synaptically enhanced.  Thus in those
circumstances where cortical inputs lead to expected
reward, TANs will tend to have less excitatory effect on
matrix.  Since the TAN afferents to matrix are dense and
nontopographic, they represent a random “background
noise” input, which can increase variance in selected
matrix responses to cortical inputs, making the striatally-
selected motor response to a cortical input somewhat
nondeterministic.  The resulting behavior should appear
“exploratory,” involving a range of different responses to
a given stimulus.  Synaptic increases in patch, in addition
to causing accurate “predictions” of reward size, as
described, also increasingly inhibit TANs, diminishing the
breadth of exploratory variability.  Thus as rewards occur,
not only will reward-associated responses be increasingly
selected by matrix, but the variability among those
responses will decrease.  Analyses suggest detailed
comparisons of basal ganglia and standard reinforcement
learning systems (Schultz et al., 1997; Dayan et al., 2000;
see Table 1).

Table 1. Simplified basal ganglia algorithm
1) Choose action A.  Set reward_estimate ← 0

Set max_randomness ← R > 0
2) randomness ← max_randomness – reward_estimate
3) reward ← Eval( A + randomness )
4) If reward > reward_estimate then

A ← A + randomness
reward_estimate ← reward

5) goto step 2)

Neocortex /  Thalamocort ical  system
Neurons throughout neocortex are organized into
relatively stereotypical architectures (Figure 3a).
Although cortical studies describe some (subtle but
potentially crucial) differences among various cortical
regions (Galuske et al., 2000; Gazzaniga, 2000), the
overwhelmingly shared characteristics justify  attempts to
identify common basic functionality, which may be
augmented by special purpose capabilities in some
regions (Lorente de No, 1938; Szentagothai, 1975; Keller
& White, 1989; Rockel et al., 1980; Castro-Alamancos &
Connors, 1997; Braitenberg & Schuz, 1998; Valverde,
2002).

Two parallel circuit types occur, involving
topographic projections of certain restricted thalamic
populations and broad, diffuse projections from the
remaining thalamic neurons. These two populations of
thalamic cells, respectively termed “core” and “matrix”
(no relation, confusingly enough, with “matrix” in
striatum), are distinguishable by their targets, topography,

and chemistries (Jones, 2001).  The topographically
organized projections from thalamic core synapse largely
on layer IV and deep layer III cells (Fig 3b); the diffuse
matrix projections form synapses predominantly in layer
I, on the apical dendrites of layer II, III and V cells (Fig
3c).  (Although the topographic afferents to middle
cortical layers, e.g. LGN to visual cortex, are often
thought of as the primary input to sensory neocortex,
these fibers actually comprise only about 6% of the
synapses onto their primary layer IV targets, with the
remaining afferents coming largely from lateral cortico-
cortical connections (Freund et al., 1985; 1989; Peters &
Payne, 1993).

Peripheral inputs activate thalamic core cells, which
in turn participate in topographic activation of middle
cortical layers; e.g., ear → cochlea → auditory brainstem
nuclei → ventral subdivision of medial geniculate (MGv)
→  primary auditory cortex (A1).  In contrast, matrix
nuclei are most strongly driven by corticothalamic
feedback (Diamond et al. 1992). Thus peripheral afferents
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activate core nuclei, which activate cortex (via a
stereotypical vertically organized pattern: middle layers
→ superficial → deep layers), then activating core and
matrix nuclei via corticothalamic projections
(Mountcastle 1957; Hubel & Wiesel 1977; Di et al. 1990).

Three primary modes of activity have typically been
reported for thalamic neurons: tonic, rhythmic and
arrhythmic bursting.  The latter appears predominantly
during non-REM sleep whereas the first two appear
during waking behavior (McCarley et al., 1983; Steriade
& Llinas, 1988; McCormick & Bal, 1994).  There is
strong evidence for ascending influences (e.g., basal
forebrain) affecting the probability of neuronal response
during the peaks and troughs of such “clocked” cycles.
The most excitable cells will tend to fire in response even
to slight afferent activity whereas less excitable neurons
will only be added in response to stronger input; this
excitability gradient selectively determines the order in
which neurons will be recruited to respond to inputs of
any given intensity.

Axons of inhibitory interneurons densely terminate
preferentially on the bodies, initial axon segments, and
proximal apical dendrites of excitatory pyramidal cells in
cortex, and thus are well situated to exert powerful control
over the activity of target excitatory neurons.  When a
field of excitatory neurons receives afferent stimulation,
those that are most responsive will activate the local
inhibitory cells in their neighborhood, which will in turn
inhibit local excitatory cells.  The typical time course of
an excitatory (depolarizing) postsynaptic potential (PSP)
at normal resting potential, in vivo, is brief (15-20 msec),
whereas corresponding GABAergic inhibitory PSPs can
last roughly an order of magnitude longer (80-150 msec)
(Castro-Alamancos and Connors, 1997).  Thus excitation
tends to be brief, sparse, and curtailed by longer and
stronger feedback lateral inhibition (Coultrip et al., 1992).

Based on the biological regularities specified, a
greatly simplified set of operations has been posited
(Rodriguez et al., 2004).  Distinct algorithms arise from
simulation and analysis of core vs. matrix loops (see
Tables 2 & 3). 

Figure 3. Thalamocortical loops

Thalamocortical “core” circuits.  In the core loop,
simulated superficial cells that initially respond to a
particular input pattern become increasingly responsive
not only to that input but also to a range of similar inputs
(those that share many active lines; i.e., small Hamming
distances from each other), such that similar but
distinguishable inputs will come to elicit identical patterns
of layer II-III cell output, even though these inputs would
have given rise to slightly different output patterns before
synaptic potentiation.  These effects can be described in
terms of the formal operation of clustering, in which
sufficiently similar inputs are placed into a single
category or cluster.  This can yield useful generalization

properties, but somewhat counterintuitively, it prevents
the system from making fine distinctions among members
of a cluster.  For instance, four similar inputs may initially
elicit four slightly different patterns of cell firing activity
in layer II-III cells but after repeated learning / synaptic
potentiation episodes, all four inputs may elicit identical
cortical activation patterns.  Results of this kind have been
obtained in a number of different models with related
characteristics (von der Malsburg, 1973; Grossberg, 1976;
Rumelhart & Zipser, 1985; Coultrip et al., 1992).

Superficial layer responses activate deep layers.
Output from layer VI initiates feedback activation of
nucleus reticularis (N.Ret) (Liu and Jones 1999), which in
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turn inhibits the core thalamic nucleus (Fig 3b).  Since, as
described, topography is preserved through this sequence
of projections, the portions of the core nucleus that
become inhibited will correspond topographically to those
portions of L.II-III that were active.  On the next cycle of
thalamocortical activity, the input will arrive at the core
against the background of the inhibitory feedback from
N.Ret, which has been shown to last for hundreds of
milliseconds (Cox et al., 1997; Zhang et al., 1997).  Thus
it is hypothesized that the predominant component of the
next input to cortex is only the un-inhibited remainder of
the input, whereupon the same operations as before are
performed.  Thus the second cortical response will consist
of a quite distinct set of neurons from the initial response,
since many of the input components giving rise to that
first response are now inhibited.  Analysis of the second
(and ensuing) responses in computational models has
shown successive sub-clustering of an input:  the first
cycle of response identifies the input’s membership in a
general category of similar objects (e.g., flowers), the next
response (a fraction of a second later) identifies its
membership in a particular subcluster (e.g., thin flowers;
flowers missing a petal), then sub-sub-cluster, etc.  Thus
the system repetitively samples across time, differentially
activating specific target neurons at successive time
points, to discriminate among inputs.  An initial version
of this derived algorithm arose from studies of
feedforward excitation and feedback inhibition in the
olfactory paleocortex and bulb, and was readily
generalized to non-olfactory modalities (vision, audition)
whose superficial layers are closely related to those of

olfactory cortex, evolutionarily and structurally.  The
method can be characterized as an algorithm (Table 2).

Analysis reveals the algorithm’s time and space
costs.  The three time costs for processing of a given input
X are: i) summation of inputs on dendrites; ii)
computation of “winning” (responding) cells C; iii)
synaptic weight modification.  For n learned inputs of
dimensionality N, in a serial processor, summation is
performed in O(nN) time, computation of winners takes
O(n) time, and weight modification is O(N log n).  With
appropriate parallel hardware, these three times reduce to
O(log N), O(log n), and constant time respectively, i.e.,
better than linear time. Space costs are similarly
calculated: given a weight matrix W, to achieve complete
separability of n cues, the bottom of the constructed
hierarchy will contain at least n units, as the leaves of a
tree with log Bn hierarchical layers, where B is the
average branching factor at each level.  Thus the complete
hierarchy will contain ~ n[B/(B-1)] units, i.e., requiring
linear space to learn n cues (Rodriguez et al., 2004).

These costs compare favorably with those in the
(extensive) literature on such methods (Ambros-Ingerson
et al., 1990; Gluck & Granger, 1993; Kilborn et al., 1996;
Rodriguez et al., 2004).  Elaboration of the algorithm has
given rise to families of computational signal processing
methods whose performance on complex signal
classification tasks has consistently equaled or
outperformed those of comparable methods (Coultrip and
Granger, 1994; Kowtha et al., 1994; Granger et al., 1997;
Benvenuto et al., 2002; Rodriguez et al., 2004).

Table 2. Thalamocortical Core Algorithm
for input X
     for C  ∈   win(X,W)
          Wj  ⇐   Wj  + k(X – C)
     end_for
X ⇐  X – mean(win(X,W))
end_for

where 
X = input activity pattern (vector);
W = layer I synaptic weight matrix;
C = responding superficial layer cells (col vector);
k = learning rate parameter;
win(X,W) = column vector in W most responsive to X before lateral inhibition [∀j, max(X · Wj) ]

Thalamocortical “matrix” circuits.  In contrast to the
topography-preserving projections in the “core” loop
between core thalamus and cortex, the diffuse projections
from layer V to matrix nuclei, and from matrix nuclei
back to cortex (Fig 3c) are modeled as sparsifying and
orthogonalizing their inputs, such that any structural
relationships that may obtain among inputs are not
retained in the resulting projections.  Thus input patterns
in matrix or in layer V that are similar may result in very

different output patterns, and vice versa.  As has been
shown in previously published studies, due to the
nontopographic nature of layer V and matrix thalamus,
synapses in layer V are very sparsely selected to
potentiate, i.e., relatively few storage locations (synapses)
are used per storage/learning event (Granger et al., 1994;
Aleksandrovsky et al., 1996; Rodriguez et al., 2004).  For
purposes of analysis, synapses are assumed to be binary
(i.e., assume the lowest possible precision: synapses that
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are either naïve or potentiated).  A sequence of length L
elicits a pattern of response according to the algorithm
given previously for superficial layer cells.  Each
activated superficial cell C in turn activates deep layer
cells.  Feedforward activity from the matrix thalamic
nucleus also activates layer V.  Synapses on cells
activated by both sources (the intersection of the two
inputs) become potentiated, and the activity pattern in
layer V is fed back to matrix.  The loop repeats for each
of the L items in the sequence, with the input activity
from each item interacting with the activity in matrix
from the previous step (see Rodriguez et al., 2004).

Activation of layer V in rapid sequence via
superficial layers (in response to an element of a
sequence) and via matrix thalamus (corresponding to
feedback from a previous element in a sequence) selects
responding cells sparsely from the most activated cells in
the layer (Coultrip et al., 1992) and selects synapses on
those cells sparsely as a function of the sequential pattern
of inputs arriving at the cells.  Thus the synapses
potentiated at a given step in layer V correspond both to
the input occurring at that time step together with
orthogonalized feedback arising from the input just prior
to that time step.  The overall effect is “chaining” of
elements in the input sequence via the “links” created due
to coincident layer V activity corresponding to current
and prior input elements. The sparse synaptic potentiation
enables layer V cells to act as a novelty detector,
selectively responding to those sequential strings that
have previously been presented (Granger et al., 1994).
The implicit data structures created are trees in which
initial sequence elements branch to their multiple possible

continuations (“tries,” Knuth, 1997).  Sufficient
information therefore exists in the stored memories to
permit completion of arbitrarily long sequences from just
prefixes that uniquely identify the sequence.  Thus the
sequence “Once upon a time” may elicit (or “prime”)
many possible continuations whereas “Four score and
seven” elicits a specific continuation.

The resulting algorithm (see Table 3) can be
characterized in terms of computational storage methods
that are used when the number of actual items that occur
are far fewer than those that in principle could occur.  The
number of possible eight-letter sequences in English is
26^8 ≈ 200,000,000,000, yet the eight-letter words that
actually occur in English number less than 10,000, i.e.,
fewer than one ten-millionth of the possible words.  The
method belongs to the family of widely-used and well-
studied data storage techniques of “scatter storage” or
“hash” functions, known for the ability to store large
amounts of data with great efficiency.  Both analytical
results and empirical studies have found that the derived
matrix loop method requires an average of less than two
bits (e.g., just two low-precision synapses) per complex
item of information stored.  The method exhibits storage
and successful retrieval of very large amounts of
information at this rate of storage requirement, leading to
extremely high estimates of the storage capacity of even
small regions of cortex.  Moreover, the space complexity
of the algorithm is linear, or O(nN) for n input strings of
dimensionality N; i.e., the required storage grows linearly
with the number of strings to be stored (Granger et al.,
1994; Aleksandrovsky et al., 1996; Rodriguez et al.,
2004).

Table 3. Thalamocortical Matrix Algorithm
for input sequence X(L)

for C ∈  TopographicSuperficialResponse(X(L))
for V(s) ∈  C ∩ NNtResponse(X(L-1))

Potentiate( V(s) )
    NNt(L)  ⇐ NontopographicDeepResponse(V)

end_for
end_for

end_for

where L = length of input sequence;
C = columnar modules activated at step X(L);
V(s) = synaptic vector of responding layer V cell,
NNt(L) = response of nonspecific thalamic nucleus to feedback from layer V.

Combined telencephalic algorithm operation and the
emergence of complex specializations.  In combination
with time dilation and compression algorithms arising
from amygdala and hippocampal models (Granger &
Lynch, 1991; Granger et al., 1994; Kilborn et al., 1996), a
rich range of operations is available for composition into
complex behaviors.  From the operation of
thalamocortical loops arises the learning of similarity-

based clusters (Table 2) and brief sequences (Table 3),
yielding the primary data structure of thalamocortical
circuitry: sequences of clusters.  These are embedded into
thalamo-cortico-striatal (TCS) loops which enable
reinforcement-based learning of these sequences of
clusters.  The output of any given cortical area becomes
input (divergent and convergent) to other cortical areas, as
well as receiving feedback from those cortical areas.
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Each such region in the TCS architecture performs the
same processing on its inputs, generating learned nested
sequences of clusters of sequences of clusters.

Auditory cue processing.  Figure 4a illustrates a
spectrogram (simplified cochleogram) of a voice stream
(the spoken word “blue”), as might be processed by

presumed auditory “front end” input structures.
Proceeding left to right (i.e., in temporal order) and
identifying “edges” that are readily detected (by simple
thresholding) leads to creation of brief sequences /
segments corresponding to these edges as in Figure 4b.

Figure 4. Spectrogram and learned cortical sequences

The learned cortical sequences (characterized as line
segments) correspond to constituents of the signal.  As
multiple instances of the signal are learned, some features
will be strengthened more than others, corresponding to a
statistical average of the signal rather than of any specific
instance.  Outputs from cortical areas are input to other
cortical areas, combining individual pairwise sequences
into sequences of sequences (actually sequences of
clusters of sequences of clusters, etc.), and statistics are
accreted for these by the same mechanisms.  The result is
a widely distributed set of synaptic weights that arise as a
result of training on instances of this kind.  (There is
contention in the literature as to whether such learned
internal patterns of synaptic weights are
“representations,” a term that has baggage from other
fields.  Without engaging this controversy, we use the
expression as a term of convenience for these patterns of
weights.)  These differ from many other types of
representations, in that they are not strict images of their
inputs but rather are statistical “filters” that note their
sequence of features (or sequence of sequences) in a
novel input, and compete against other feature filters to
identify a “best partial match” to the input.  It is notable
that since each sequence pair simply defines relative

positions between the pair, they are independent of
particular frequencies or exact time durations.

Figure 5 illustrates two different instances of the
utterance “blue” that, after learning, can be recognized by
the algorithm as members of the same category, since
they contain many of the same organization of
grammatical elements (sequences of clusters, and
sequences of clusters of sequences of clusters), whereas
other utterances contain distinguishing differences.  These
representations, arising simply from distributed patterns
of synaptic strengthening in the described brain circuit
networks, have desirable properties for recognition tasks.

The “best partial match” process can pick out
candidate matches from a stream of inputs.  Thus the
detector for “blue” and that for “bird” identify their
respective targets in a continuous utterance (e.g., “the
blue bird”). Recognition systems traditionally have
difficulty with segmentation, i.e., division of a stream into
parts.  In the proposed recognition scheme, recognition
and segmentation are iteratively interleaved: identification
of the sequence components of a candidate word in the
stream gives rise to a candidate segmentation of the
stream.  Competing segmentations (e.g., from sequence
components of other words overlapping) may overrule
one segmentation in favor of an alternative.

Figure 5.  Two utterances and illustration of learned nested sequences
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The figure illustrates the nested nature of the operation of
the thalamo-cortico-striatal loops.  Initial processing of
input a) involves special-purpose “front ends” that in the
model are carried out by (well-studied) Gabor filters and
edge detection methods, producing a first internal
representation of sequences as seen in Figure 4.  Each
successive stage of processing takes as input some
combination of the outputs of prior stages.  Thus the brief
sequences in Figure 4b become input to a copy of the
same mechanism, which identifies sequences of the
sequences (5b).  Downstream regions then identify
sequences of those sequences, and so on (5c,d).  With
learning, the resulting set of relative feature positions
comes to share substantial commonalities that are partial-
matched, as in the two different utterances of the word
“blue in the top and bottom frames of Figure 5.

Visual image processing.  Once past the initial,
specialized “primary” cortical sensory regions,
thalamocortical circuits are remarkably similar (though,
as mentioned, differences have been found, with unknown
implications).  Moreover, the vast majority of cortical
areas appear to receive inputs not originating just from a
single sensory modality but from conjunctions of two or
more, begging the question of whether different internal
“representations” can possibly be used for different
modalities.  Auditory cortical regions arise relatively early

in mammalian evolution (consistent with the utility of
non-visual distance senses for nocturnal animals) and may
serve as prototypes for further cortical elaboration,
including downstream (non-primary) visual areas.  It is
here hypothesized that, although primary cortical regions
perform specialized processing, subsequent cortical
regions treat all inputs the same, regardless of modality of
origin.  The physiological literature suggests particular
visual front end processing (arising from retina, LGN,
early cortical areas) resulting in oriented line and curve
segments comprising an image.  From there on, images
may be processed as sounds, though due to recruitment of
front end visual processing, arbitrary covert “movements”
through an image are assumed to occur, rather than
processing being limited to an arbitrary “left to right”
corresponding to the flow of time in an auditory image.
I.e., it is as though auditory processing were a callable
subroutine of visual processing.  Thus, after initial
processing of an image (such as part of Figure 6a)
(performed in this case via oriented Gabor filters (6b) at
different frequency parameters, to roughly approximate
what has been reported for visual front end processing
from many sources over many years), the resulting
segments (pairwise sequences) are composed into
sequences of sequences (6c), etc until, over training trials,
they become statistical representations of the objects (e.g.,
letters) on which they have been trained (6d).

Figure 6.  Nested sequences of clusters identified in images (see text).

As with auditory data, this method leads to
representations that iteratively alternate recognition and
segmentation; i.e., there exists no separate segmentation
step but rather candidate segments emerge, as recognizers
compete to identify best partial matches in an image.
Further characteristics shared with auditory processing
include a number of invariances: translation, scaling and
distortion, as well as resistance to partial occlusion.
Again, these invariances are not add-on processing

routines but rather emerge as a result of the processing.
Since the sequences, and sequences of sequences, record
relative relationships as opposed to absolute locations,
and since the front end filtering occurs across multiple
size and frequency scales, recognition of a small A in a
corner proceeds just like that of a large centered A.  And
since the result is merely a best partial match, rather than
a complete match, a partially occluded or distorted A may
match to within threshold (Figure 7).
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Figure 7.  Emergent invariances from the derived methods (distortion, scaling, partial occlusion).

Figure 8. Learned internal representations, and trajectories.

Navigation.  Presentation of locations containing a hard-
coded artificial desirable “goal” state, and sequential
reinforcement training from various starting locations,
causes the system to improve its approaches to the goal
from arbitrary starting points.  Figure 8 shows the internal
representations (a,c) constructed in the striatal complex as
a result of training trials, and illustrates sample
trajectories (b,d) to the goal from five starting points, both
before (a,b) and after (c,d) this training.  The
representations correspond to the learned positive and
negative “strengths” of four candidate movement
directions (N,S,E,W), along with a resultant vector, at
each location in the grid.  Figures 8e-f show the
corresponding internal representation (e) from
photographs (f), enabling a robot to learn efficient
navigation to a goal from different starting locations
(8g,h).

Hierarchical grammatical structure.  It is notable that
the emergent data structure of the thalamo-cortico-striatal
model, nested sequences of clusters, is a superset of the
structures that constitute formal grammars (in particular,
graph-grammars): i.e., ordered sequences of elements,
such that each element (node) represents either a category
(in this case a cluster), or expands to another node
(nesting).  Among the useful properties of these data
structures is their incremental growth: adding new copies
of TCS loops (as brain size grows) increases the size of
the grammars that can be learned, corresponding to the
incremental addition of learned “rules” to the grammar.
Thus small-brained mammals may acquire relatively
small internal grammars, enabling learning of
comparatively simple mental constructs, whereas larger-
brained mammals may learn increasingly complex

internal representations.  This is specifically seen in the
examples above.  E.g., back in Figure 5, successive
processing of the input, carried out by increasingly
“downstream” components of the model, identifies first a
simple set of features and relations among those features;
then successively more complex nested relations, and
relations among relations.  In the model, though all
“regions” are identical in structure, they receive
somewhat different (though overlapping) inputs (e.g.,
certain visual features; certain combinations of visual and
auditory features).  After exposure to multiple inputs,
regional specializations of function (e.g., human voices
vs. other sounds; round objects vs. angular objects) arise
due to lateral inhibition among areas, giving rise to
regions that are performing the same computational
function but become increasingly dedicated to the
processing of particular types of inputs.

The incremental nature of the data structure (nested
sequences of clusters) enables it to grow simply by adding
to the components or “rules” acquired by the grammar,
adding to the power of the resulting behavior that the
grammar can give rise to.  As abstractions (nested
sequences of clusters of sequences of clustes) are built up
through the incremental grammar, slightly more
complicated behaviors arise from its use.  As more
telencephalic “real estate” is added, longer (nested)
sequences of clusters emerge, corresponding to more
complex syntax. That is, changing nothing of the structure
of thalamocortical loops, only the number of them, can
give rise to new function.

The extensible (generative) nature of human
language has typically been explained in terms of
grammars of this kind: from a given grammar, a
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potentially infinite number of outputs (strings in the
language) can be produced.  Humans uniquely exhibit
rapidly-acquired complex grammatical linguistic
behavior, prompting the search for uniquely human brain
regions that could explain the presence of this faculty in
humans and its absence in other primates (see, e.g.,
Hauser et al., 2002; Fitch and Hauser 2004; O’Donnell et
al., 2005; Preuss 1995; 2000; Galuske et al., 2000).  The
modeling described herein leads to a specific hypothesis:
that human language arises in the brain as a function of
the number of thalamo-cortico-striatal loops.  Rather than
a wholly new brain module that differentially processes
for language, the evolutionary addition of TCS modules,
some of which indeed become dedicated to
communication, leads to the incremental acquisition of
linguistic abilities.  This growth need not be linear;
grammars have the property of exhibiting apparently new
behaviors due to the addition of just a few rules.  There
are no living primates with brain sizes between those of
apes and humans, a fourfold difference; if human
language arises directly from increases to these TCS
loops, then intermediate prelinguistic abilities may have
been present in early hominids, even though not in extant
primates.  The conjecture is consistent with a broad range
of constraints that are argued to rule out alternative
hypotheses (see, e.g., Pinker 1999; Pinker and Jackendoff
2005).

The processing of linguistic input, then, is not a
different function from that of other brain processing, but
rather is just one special case of the computational
faculties present in smaller brains.  With an understanding
of the specific nature of these computations, it is possible
to see how they operate on simpler (e.g., perceptual)
inputs as well as complex (linguistic) inputs, differing
largely in the depth of processing and thus the size of the
grammars that are constructed for these inputs.

Conclusions
Human brains arose via a series of intermediaries and
under a range of different conditions, without any set of
computational plans or top-down principles.  Thus brains
and their constituent circuits are not “optimized” for any
particular task but represent earlier circuits co-opted to
perform new jobs, as well as compromises across multiple
tasks that a given circuit may have to participate in under
different circumstances.  Bottom up analysis of circuits,
without targeting any “intended” or “optimized”
functions, leads to a  set of computational functions that
may comprise the “instruction set” of a brain’s most basic
operations, of which other operations are composed.  The
overwhelming regularity of cortical structures, and of
large loops through cortical and striatal telencephalon,
suggests the universality of the resulting composite
operations.

The basic algorithms that have been derived include
many that are not typically included in proposed

“primitive” sets: sequence completion, hierarchical
clustering, retrieval trees, hash coding, compression, time
dilation, reinforcement learning.  Analysis indicates these
algorithms’ computational efficiency, showing that they
scale well as brain size increases (Rodriguez et al., 2004).
Application of these derived primitives gives rise to a set
of unusual approaches to well-studied tasks ranging from
perception to navigation, and illustrates how the same
processes, successively re-applied, enable learning of data
structures that account for generative human language
capabilities.

Persistent questions of brain organization are
addressed.  For instance, How can replication of roughly
the same (neocortical) circuit structure give rise to
differences in kind rather than just in number?
Thalamocortical and corticostriatal algorithms must be
constituted such that making more of them enables
interactions that confer more power to larger assemblies.
This property is certainly not universal (e.g.,
backpropagation costs scale as the square of network size,
and do not solve new kinds of problems simply by
growing larger).

What relationships, if any, exist between early
sensory operations and complex cognitive operations?
The specific hypothesis is forwarded here that, beyond
initial modality-specific “front end” processing, all
telencephalic processing shares the same operations
arising from successive thalamo-cortico-striatal loops.
Complex “representations” (objects, spaces, grammars,
relational dictionaries) are composed from simpler ones;
“cognitive” operations on these complex objects are the
same as the perceptual operations on simpler
representations; and grammatical linguistic ability is
constructed directly from iterative application of these
same operators.

Procedures that seem easy and natural to humans
(and, often, to other animals) such as image recognition,
sound recognition, tracking, etc., have been notoriously
difficult for artificial systems to perform.  Many of these
tasks are ill-specified, and the only reason that we believe
that they are computable is the existence proof that we
perform them.  Moreover, many systems that learn
statistically have been shown to be inadequate to the task
of learning rule-like cognitive abilities (Pinker, 1999).
We have here illustrated that data structures of
grammatical form arise from models that contain the
anatomical architectures and physiological operations of
actual brain circuits, demonstrating how this class of
circuit architecture can avoid the problems of extant
“neural network” models and give rise to computational
constructs of a power appropriate to the tasks of human
cognition.  Ongoing bottom-up analyses of brain circuit
operation may continue to provide novel engineering
approaches applicable to the seemingly intractable
problems of cognition.  
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