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Evoked response potentials (ERPs) to brief flashes of
light were analyzed for constituent features that could
be used to distinguish individuals with Alzheimer’s
disease (AD, n � 15) from matched control subjects
(n � 17). Statistical k nearest-neighbor methods distin-
guished AD from control with a maximum sensitivity
of 29% and false alarm rate of 12%. The comparable
sensitivity/false-alarm values for a statistical projec-
tion pursuit method and an extended projection pur-
suit method, which selectively identify discriminative
features for classification, were 75%/18% and 100%/6%,
respectively. The results demonstrate that combina-
tions of selected ERP time segments across different
electrodes contain signal features that discriminate
AD from control subjects with high sensitivity and
specificity. © 2002 Elsevier Science (USA)
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INTRODUCTION

A number of quantitative EEG measures have been
used in attempts to identify physiological correlates of
the cognitive changes found in early stage Alzheimer’s
disease (AD). Using multiple linear regression analy-
sis, Claus et al. (7) established that a slowing of spec-
tral EEG predicts the rate of subsequent cognitive and
functional decline in patients with AD. EEG coherence
is thought to be a measure of regional cortical synchro-
nization and possibly the functional status of intracor-
tical communication (33). Wada et al. reported that
patients with AD had significantly lower intra- (49)
and interhemispheric coherence (50) than controls in
the alpha and beta frequency bands. Other workers
showed that AD patients, particularly those with se-
vere cognitive impairments (17), have reduced alpha
band coherence in temporo-parieto-occipital areas (32).
Further evidence linking coherence to the evolution of
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AD comes from results suggesting that patients ho-
mozygous for the Apo-E epsilon4 allele, a predisposing
condition for sporadic Alzheimer’s, have particularly
reduced bilateral coherence in select cortical fields.

EEG complexity (correlation dimension) is another
measure reported to discriminate AD from other age-
related disorders of cognition. Recent work with this
method found that the dynamics of brain state devel-
opment differed in mild AD patients from that mea-
sured in mild cognitive impairment or subjective mem-
ory complaint individuals (51). Still other EEG indices
are reported to discriminate AD from normal controls
(6, 16, 40–42) or other types of dementia (45, 11), as
well as to differentiate subgroups among AD patients
(26, 33).

Taken together the above findings constitute impres-
sive evidence that early stage AD is associated with a
particular set of EEG characteristics. There is also
reason to suspect that these characteristics may be
sufficiently pronounced to be useful in diagnosis. Since
early diagnosis and intervention may alter the outcome
of the disease (48, 14), the development of practicable
and efficacious test regimens is of increasing impor-
tance. In a review of objective diagnosis in AD, Hegerl
and Moller (21) concluded that EEG has comparable
diagnostic sensitivity and higher specificity than
SPECT and other routine structural brain imaging
(cCT, MRI). For monitoring changes of brain function
by serial sampling (e.g., during therapy with antide-
mentia drugs), the authors found EEG to be the best
available method. However, there a number of well
recognized problems in using quantitative EEG as a
diagnostic aid for neurological and psychiatric disor-
ders (27–30, 22, 3, 5).

The present study tested if an approach developed
for radar and sonar signal processing (2, 8, 31, 20, 39)
would be useful for identifying EEG correlates of AD.
The evolved method uses projection pursuit algorithms
to search for differentially diagnostic segments within
the time locked signals, with correlated co-occurrences
of segments used as composite features in classifica-
tion. Because time-locked signals are required, evoked
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response potentials (ERPs) to photic driving were used
in the studies instead of free running EEG. The results
indicate that application of iterative projection pursuit
to ERPs can be used to recognize AD with a high degree
of accuracy.

METHODS

Patient Population

All data were collected at the University of Califor-
nia, Irvine, Medical School. Fifteen patients with AD
were admitted to the study. All were outpatients, un-
hospitalized and unmedicated, meeting Diagnostic and
Statistical Manual of Mental Disorders, Fourth edition
(DSM-IV) criteria for dementia of the Alzheimer’s type
and National Institute of Neurological and Communi-
cative Disorders (10) and Stroke–Alzheimer’s Disease
and Related Disorders Association (NINCDS-ADRDA)
criteria for probable AD. Average age was 76.2 � 5.7
years. The severity of illness was limited to mild or
moderate, based on a screening Global Deterioration
Scale (GDS) rating of 3, 4, or 5 and a screening Mini-
Mental State Examination (MMSE) score between 16
and 28, inclusive (22.0 � 3.2, mean plus standard
deviation).

Normal Controls

Seventeen normal subjects matched for age, gender,
and education level were recruited from the commu-
nity. Each subject was interviewed by a research psy-
chiatrist using DSM-IV and MMSE to rule out AD and
other psychiatric diagnoses.

Exclusion Criteria

Any subject with a history or current evidence of any
of the following medical conditions were excluded from
the study: (i) severe or unstable disease other than AD,
(ii) medical or psychiatric disorders that might compli-
cate the assessment of dementia, (iii) a disability that
may prevent the subject from completing all study
requirements (e.g., blindness, deafness, language diffi-
culty), and (iv) recent intake of an investigational drug,
drug known to cause major organ system toxicity, any
CNS-active medication, or any recreational drug. Prior
drug or alcohol use was not screened. All subjects’
vision was checked.

Apparatus

The testing system consisted of an electrode cap
(Physiometrix), amplifier system (Nihon-Kohden), and
PC-based analysis/display device, along with a bright
strobe light (1.28 J per flash). ERPs were collected from
19 sites on the skull through scalp electrodes embed-
ded in a tight-fitting meshwork cap. (For sites of elec-
trode placement, see Fig. 4.) The leads were connected

to an amplifier system including a set of 19 amplifiers,
digitizing of the amplifier outputs, and interface to PC.
The amplifiers had 12-bit resolution, 24-bit DSP pre-
processing, and EEG/ERP sample rates of 256 Hz.
Each of the 19 channels exhibited frequency response
0.1 Hz to 5 KHz; risk current �10 �A; sensitivity 0.05
�V; input impedance �800 Me; noise � 2�V p-p 0.5 to
30 Hz; CMMR �90 db, 60 Hz, output to PC serial port.
Captured signals were stored real-time in the PC and
the raw unprocessed signals were available for analy-
sis by the algorithms as described below.

Procedures

Subjects were acclimated to the apparatus for 5 min
during which time the quality of each of the 19 leads
was checked; acceptable electrode impedance level was
10 Kohm. Once normal voltage EEG was recorded from
all sites, stimuli (visual light flashes) were presented at
60 per minute (1 Hz) for a session of 5 min in duration,
and continuous ERPs were collected.

Analyses

For each subject, ERPs were averaged into 1-s volt-
age series for each electrode channel, and binned in
5-ms time segments, so that there was a sequence of
200 voltage values for each channel. These voltage
vectors for all electrodes were conflated to make a
single vector for each subject consisting of 200 � 19 �
3800 elements.

k-nearest-neighbor analysis. For each subject, the k
nearest neighbors among the remaining subjects (15
Alzheimer’s and 17 controls, minus the subject cur-
rently being analyzed) were found using Mahalanobis
distance measures, for k � 1,3,5. In each case, the
category (Alzheimer’s or control) that was in the ma-
jority of nearest neighbors was chosen as the deduced
diagnosis of the subject being tested. A deduced Alz-
heimer’s diagnosis of an actual Alzheimer’s patient
was classed as a true positive; a deduced Alzheimer’s
diagnosis of an actual control subject was a false pos-
itive; a deduced control diagnosis that was correct was
a true negative; and a deduced control that was not
correct was a false negative.

Projection pursuit. Subsets of the data were ran-
domly generated, in which all but a few voltage values
were removed. For purposes of projection pursuit
methods, these subsets are equivalent to subspace pro-
jections of the 3800-dimensional vector that corre-
sponds to the total recorded evoked response, as just
described. In each subspace, k nearest neighbor (for
k � 1,3,5) was performed against all remaining sub-
jects as above (24). Votes for Alzheimer’s versus control
were tallied across all sampled subspaces, and the
resulting majority classification reported for each of
the three values of k used.

270 BENVENUTO ET AL.



Extended projection pursuit. An initial series of
subspace projections were generated randomly as
above, k nearest neighbor was performed, and votes
scored as above. Based on these findings, the most
predictive subspaces were selected and the process per-
formed again; this iterative compilation of subspaces
continued until all subspaces chosen were more predic-
tive than a preselected threshold amount (71%), and the
resulting majority classification was reported as above.

Cluster analysis. Euclidean distances were com-
puted among the subjects using (a) all 3800 features for
each subject and (b) only the 100 features in the final
subset arrived at via extended projection pursuit. Sin-
gle-linkage cluster analysis (12) was applied with the
results plotted as dendrograms in which the height of
each bar indicates the average distances between all
elements included under that bar.

RESULTS

Figure 1 shows a representative example of averaged
evoked potentials from an Alzheimer’s subject (left)
and a matched control (right) in response to light
flashes repeated at 1-s intervals (see Methods). Shown
are complete 1000-ms (1 s) averaged evoked responses
for a single electrode (standard electrode site C4, lo-
cated just to the right of center on the scalp); time tick
marks are at 250, 500, and 750 ms.

Discrimination of AD from Control

Single vectors (3800 elements) were constructed for
each subject. Jackknife analyses were run in which all
the subject records but one were used as matching
data, and the remaining subject was tested to see
which category (Alzheimer’s or control) that subject
would be placed in, based on which of the matching
data were its nearest neighbors. For comparative pur-
poses, as described, each record was run for each of
three classification algorithms (k nearest neighbor,
projection pursuit, extended projection pursuit) with
three parameter settings. Receiver operating charac-
teristic (ROC) plots were made for all of these tests.

Figure 2 shows the results. Sensitivity [true posi-
tives/(true positives � false negatives)] is plotted on
the Y axis against the false positive rate (1-specificity)
on the X axis. For k nearest neighbor, with 1, 3, and 5
neighbors chosen, sensitivity does not exceed 25% with
a false positive rate of 12%. Projection pursuit methods

with three parameter settings achieved a best rate of
75% sensitivity with a 29% false positive rate.

The extended projection pursuit method, via itera-
tive identification of differently predictive regions
within the ERPs (as shown in Table 1), attained sen-
sitivity of 100% with a false positive rate of 6.1% (these
figures were the same for k of 1, 3, and 5). All Alzhei-
mer’s subjects were correctly classified, and one control
subject was misclassified as Alzheimer’s.

Quantitative Classification

Single vectors (3800 elements) were constructed for
each individual. Metric distances were then used to
measure the relative similarity of the responses of dif-
ferent participants in the study. Figure 3 shows den-
drograms indicating pairwise Euclidean distances
among the waveforms with complete feature sets (left)
and with reduced feature sets identified by extended
projection pursuit (right). Subjects are identified as
Alzheimer’s (A) or control (C). The height of a crossbar
indicates the average distances among records under
the crossbar. Distances among high-dimensional ob-
jects cannot be fully illustrated with dendrograms. In
part this is due to the nontransitive nature of neighbor
relations: for instance, it is possible for A1’s nearest
neighbor to be A4, but for A4’s nearest neighbor to be
some other vector; the dendrogram does not describe
both such relationships. The left-hand dendrogram
records that subjects A1 and A4 are very similar, as are
A11 and C18. It can be seen on the left that the simi-
larity measures are not substantially larger among
members of a single diagnostic category (Alzheimer’s
or control) than they are between members of different
categories. The right-hand panel of Fig. 3 shows the
pairwise distances among only those components of the
waveforms identified by the extended projection pur-
suit method as already described. The distances among
members within diagnostic categories are significantly
lower than the distances of members between catego-
ries; i.e., the within-category similarity is lower than
the between-category similarity in this subspace.

As described above (see Fig. 2), a single control sub-
ject was incorrectly classified as Alzheimer’s; that sub-
ject, C23, has nearest neighbors in the reduced space
that are Alzheimer’s subjects (A4 and A7). Subject C29
also appears to have Alzheimer’s subjects as nearest
neighbors, but actually has nearest neighbors that are
controls. In this instance, C29’s nearest neighbor is

FIG. 1. Representative evoked responses from an Alzheimer’s (left) and matched control subject (right). Shown are 1 s of averaged data
(positivity up) for a single electrode site (C4). The light cue occurs at the left edge of each waveform; time marks appear at 250, 500, and 750
ms after the cue (see text).

271DIAGNOSTIC EVOKED RESPONSES IN ALZHEIMER’S DISEASE



C-16, but since A-7’s nearest neighbor is C-29, the
latter subjects are adjacent in this diagram. This is an
instance of the nontransitivity of nearest neighbors, as
discussed above.

Temporal Location of Predictive Features in the ERP

Each 5-ms time segment was scored for its predic-
tiveness, calculated as the number of times a segment
is used in a correct prediction divided by the number of
times the segment is used in all tests. (Thus the mea-
sures of predictiveness range from 0 to 100). Table 1
shows the most predictive time intervals identified in
the averaged records of a single electrode, with their
relative predictiveness. (The electrode selected for this

table, C4, is typical of the predictiveness of other elec-
trodes). Segments with highest (�90%) predictiveness
were found at latencies of 250–300 and 350–400 ms
following the light flash and at latencies of 850–900
and 900–950 ms following the light flash. Subsequent
analysis showed that these predictive components
were not present in initial trials for a subject but in-
stead developed during repetitive testing.

Spatial and Frequency Location of Predictive
Features in the ERP

Figure 4 shows the relative power in each of four
frequency bands (delta, theta, alpha, beta) for averages

FIG. 2. Receiver operating characteristic for three analysis techniques (k nearest neighbor, projection pursuit, extended projection
pursuit) for each of three parameters (k � 1, 3, 5). See text.

TABLE 1

Predictive ERP Time Segments (in ms)

0–99 100–199 200–299 300–399 400–499 500–599 600–699 700–799 800–899 900–999

96–100 � � �
91–95 � � �
86–90 � � � � �
81–85 � � �
76–80 � � � � �
71–75 � � � � � � �

Note. Occurrence of predictive time segments identified by extended projection pursuit for a single electrode (C4), together with their
relative predictiveness (see text). Each column indicates a period of 100 ms; each row is the predictiveness (defined above) of identified
segments occurring within each 100-ms period.
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of Alzheimer’s and matched controls, plotted across the
19 electrodes of the headset apparatus. The left half of
the figure shows the four plots for Alzheimer’s subjects;
those for controls are on the right. For each plot, the
head is shown from the top, with the head facing to-
ward the top of the page.

The figure shows the log of the average relative spec-
tral and spatial distribution of power within groups
(Alzheimer’s, control) and between groups. Power in
the delta frequency band was greater in Alzheimer’s
subjects than in controls; much of the added power was
in the central and parietal regions. Alzheimer’s sub-
jects also showed a slight decrease in power in the
alpha band, and alpha activity measures shifted to
more anterior electrode sites; a similar shift occurred
in the beta band. Consistent with these findings,
Huang et al. (23) found a shift in computed sources of
alpha and beta activity in an anterior direction, as well
as increased power in delta.

DISCUSSION

Projection pursuit is a computational method that is
coming into wide use for isolating similarity-based
clusters in high-dimensional data sets. Extended or
iterative pursuit is a variant in which dimensions are

dropped and the remaining dimensional set searched
for more sharply defined clusters. The method can un-
cover otherwise obscured groupings and has the fur-
ther advantage of isolating defining variables (24). It is
also computationally simple. The present study is a
first attempt to apply projection pursuit to the problem
of identifying electroencephalographic correlates of
Alzheimer’s disease.

Temporally segmented (5-ms bins) averaged evoked
responses to photic stimuli from 19 recording sites
were used to generate a high dimensional vector for
each of 15 AD patients (diagnosed by conventional
methods) and 17 matched controls. Extended iterative
projection pursuit, but not k nearest neighbor analysis
or projection pursuit alone, successfully distinguished
between the two groups. In a round-robin procedure in
which each subject was classified as being in one or the
other group, the method exhibited high sensitivity
(1.00) with a low false positive rate (0.06) under a
range of parameter settings. Examination of the initial
classification space showed that Euclidean distances
among members within a diagnostic category (Alzhei-
mer’s or control) were not reliably smaller than dis-
tances between members of different categories; thus
nearest-neighbor classification could not reliably clas-
sify subjects in their correct categories. However, the

FIG. 3. Dendrograms generated by a single-linkage clustering algorithm (see Methods). Shown are Euclidean distances among evoked
response records with all features (left) and reduced feature set (right).
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distances among members of a diagnostic category
were consistently smaller than the distances between
members of different categories in the classification
space composed of the reduced discriminative feature
sets identified with extended projection pursuit. Not
surprisingly then, nearest-neighbor classification in
the reduced space led to groupings with good sensitiv-
ity and specificity.

Examination of the reduced set of dimensions pro-
vided information about which spatio-temporal compo-
nents of the ERP contributed significantly to distin-
guishing between the two groups. Key dimensions
were identified by asking how often they predicted a
correct “diagnosis” (AD or non-AD). The most predic-
tive events occurred between 200 and 400 ms and from
800 to 1000 ms. Previous studies have established that
at least one well studied wave (P300) occurring in the
former time bin changes with normal aging. Reduced
amplitudes and delayed peaks relative to young adult
values are reported to be already present by age 50 (cf.,
4, 25, 15). P300 waves triggered by novel stimuli are
greatly reduced in early stage AD patients relative to
matched controls (9, 19). Changes in late potentials are
also reported to occur by late middle age, although
there is disagreement in the literature about the direc-
tion and size of these (15, 25, 37). And, as with P300,
late components of the ERP (800–1500 ms) are signif-
icantly altered in AD relative to controls (44). It seems

likely that the present detection of early AD-related
disturbances in the ERP reflects these described
changes.

Most studies directed at identifying ERP correlates
of Alzheimer’s use stimulus paradigms that emphasize
a particular aspect of cognitive processing (working
memory, novelty detection). Based on the results from
such studies, the effects recorded in the present exper-
iment would probably be significantly changed with
more complex cues. In accord with this, examination of
the temporal segments showed that the most predic-
tive events developed with repeated testing, an obser-
vation that suggests that simple forms of learning (e.g.,
habituation) contributed to the observed AD vs control
differences.

Frontal and parietal recordings provided the great-
est discrimination between AD and control. There is a
substantial literature pointing to frontal dysfunction
as a component of Alzheimer’s and that this can be
detected with ERPs. The frontal P300 response is de-
scribed by several investigators as having greater than
normal latency in AD (13, 38) and ERP data have been
used to support the hypothesis that fronto-parietal
changes contribute to the working memory problems
that characterize the disease (35).

In summary, the present results establish that ex-
tended pursuit projection identifies correlates of AD in
ERPs elicited by simple visual stimuli. The most dis-

FIG. 4. Relative power distribution across four frequency bands (delta, theta, alpha, beta) and 19 electrodes, in averaged evoked response
records of Alzheimer’s (left) and control subjects (right). Scale bar shows log of relative percentage power across all records.
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tinctive features occurred within two temporal seg-
ments and arose from fronto-parietal recording sites.
There is prior evidence indicating that correlates of
mild AD are found within these spatio-temporal coor-
dinates. Although there was evidence that simple
learning contributed to the observed differentiation of
the AD group, the unstructured stimuli used in the
study have the disadvantage of not activating cognitive
activities thought to be impaired by AD. Between-
group differences could be enhanced, and probably
markedly so, with paradigms that engage attention to
novelty or working memory (e.g., 9, 18, 35). On the
other hand, unstructured cues have the important ad-
vantages of test simplicity and applicability across pa-
tient populations. Regarding the latter, the same pro-
cedures used in the present study are being applied
essentially without modification to subjects with any of
several neuropsychiatric disorders. If the extended
projection pursuit techniques are successful in discrim-
inating these groups from each other, then it should be
possible to classify a subject within a space containing
collections of clusters rather than forcing a choice be-
tween positive or negative for a given disease class.
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