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Changes to myriad synapses throughout the brain
must be coordinated every time a memory is
established, and these synapses must be
appropriately reactivated every time it is
remembered.  Once stored, memories can be
recognized (when re-experiencing a learned input)
or recalled (e.g., via different input, such as a
name evoking memory of a face, or a scene
evoking memories of an experience) by many
routes.  We remember what tables are as well as
we remember a specific table, and we recognize
objects despite seeing them from quite different
angles, different lighting, different settings.
Computational simulations of synaptic
modifications (e.g., long term potentiation; see
related entries in this volume) in distinct brain
circuit architectures illustrate how these minute
changes can give rise to coherent properties of
memory; how analyses of different brain areas
yield derivations of disparate memory functions;
and how interactions among connected regions
give rise to still new operating principles beyond
those of their constituents.  The principal
anatomical designs in mammalian brain are

cortical: planar arrays of neurons, arranged with
their cell bodies in sheets and their apical dendrites
standing in parallel.  This laminar pattern contrasts
with that of most reptilian brain structures, in
which neurons are grouped in globular clusters
(“nuclei”); an exception is the cortically organized
reptilian pallium.  Phylogenetic origins of the
mammalian neocortex (perhaps including
transformed non-pallial precursors as well as
pallium) are the subject of ongoing controversy
(see, e.g., Karten, 1997; Puelles, 2001).  The
difference is one of function, not just form.  With
cells arrayed in a plane, the axons providing input
to the structure pass through the dendritic field
making synaptic contacts randomly and sparsely.
This creates a biological version of a three
dimensional array or matrix in which the rows
correspond to the input axons, the columns are the
dendrites, and each matrix entry is a synaptic
connection between an axon and dendrite (Figure
1).  The neocortex undergoes vast expansion with
mammalian evolution, and as the cortex comes to
dominate the brain, cortical computation comes to
dominate behavior.

Figure 1.  Characteristics of a cortical layer.  Axons (horizontal lines) course through the apical dendrites
of a layer of neurons making sparse, random synaptic contacts corresponding to entries in a matrix.

The Olfactory Bulb and Paleocortex.
The olfactory paleocortex, one of the oldest relics in
mammals of the reptilian pallium, is an apt starting
point for evaluation of cortical computation.  One
reason is its relative simplicity (for instance, it has
three primary layers instead of the six layers of the

neocortex).  Another is its relative proximity to its
input environment.  In other sensory systems,
inputs typically proceed from a peripheral organ
(e.g., cochlea) to one or more lower brain
structures (e.g., cochlear nucleus; colliculus), then
to a non-cortical (nuclear) structure in the



thalamus (e.g., medial geniculate nucleus), and only
then on to the primary cortex for the appropriate
sense (e.g., auditory cortex).  By comparison,
olfactory receptors (activated by chemical odorants
drawn in through the nose), project to the olfactory
bulb and thence straight to olfactory cortex.  (The
structure is variously termed olfactory paleocortex,
for its phylogenetic age; piriform, pyriform, or
prepyriform cortex, for its roughly pear-like shape;
or primary olfactory cortex, for its placement as first
cortical structure to receive olfactory input relayed
from the periphery).  Abstract models have been
constructed based on four fundamentals of the
olfactory system: i) its anatomical structure, ii) its
physiological operation during behavior, iii) the
characteristics of synaptic change caused by LTP,
and iv) the nature of the inputs that arrive naturally
at the system during olfactory-related behaviors.

Figure 2 schematically illustrates the anatomical

structure of a typical mammal’s olfactory system
(adapted from Shepherd, 1991).  The figure is
oriented such that the animal’s nose is on the left,
with the axons from the nose comprising the first
cranial nerve (Nerve I) making synaptic contact
(in the regions termed glomeruli) with the
primary excitatory (mitral) cells of the olfactory
bulb.  Mitral cells are inhibited by granule cells
via specialized synapses (see Haberly and
Shepherd, this volume), and mitral cell axons
(comprising the lateral olfactory tract) project to
cortex, where they form synaptic contacts with
the apical dendrites of the primary cortical
excitatory layer II and III cells.  Those cells in
turn project both forward, to provide the input to
downstream brain structures (such as entorhinal
cortex), and backward, providing feedback to the
bulb directly and via the anterior olfactory cortex
(often termed the anterior olfactory nucleus,
despite its laminar rather than nuclear structure).

Figure 2.  Schematic diagram of mammalian olfactory system anatomy.  Input from receptor cells in the nose
arrive via the axons comprising the first cranial nerve, making synaptic contact with the dendrites of mitral
cells in the olfactory bulb.  Mitral cell axons in turn make synaptic contact with the apical dendrites
(projecting downward, towards the cortical surface) of primary cells in the olfactory cortex.  Cortical cell
axons project forward to become input to successive anatomical structures (entorhinal cortex, hippocampus) as
well as projecting backwards to become feedback input to the inhibitory cells of the olfactory bulb.

Simple emergent computations from feedforward
operation of the bulb-cortex system.
When an animal is actively engaged in olfactory
learning behavior, the entire bulb-cortex system, its
primary target output structures (entorhinal cortex
and hippocampus), and even the overt behavioral
sniffing activity of the animal, operate in synchrony,

at a rate of about four to eight cycles per second
(Macrides, 1975; Macrides et al., 1982;
Vanderwolf, 1992; Wiebe and Staubli, 2001).  As
the animal repeatedly samples or sniffs the
olfactory environment, neurons through the entire
“assembly line” of olfactory-hippocampal
structures send spikes down their axons, in bursts



occurring approximately every fourth to eighth of a
second.  Computer simulations of the resulting
feedforward neuronal activity in the cortex have
shown that LTP-like synaptic change increments
cause specific cortical target cells that initially
responded to a particular odor, to become
increasingly responsive not only to that odor but also
to a range of similar odors.  Figure 3 uses broad
simplifying assumptions to illustrate this
straightforward principle.  (Models of the olfactory
bulb (Anton et al., 1991; 1993), not discussed here,
are assumed).  In the left hand panel of the diagram,
input axons b, c, and d are active (arrows), and are

assumed to be sufficient to elicit firing responses
from three target cells (darkened).  Synapses
whose inputs and targets are co-active
(highlighted) will potentiate.  After potentiation,
the enhanced synapses (enlarged; right panel)
confer more voltage change than they did in their
unpotentiated state, so fewer active inputs should
suffice to elicit a target neuron response.  Thus
any of the depicted input patterns P, Q, and R
may now suffice to activate the same three target
cells, whereas none of these inputs would have
activated these neurons prior to synaptic
potentiation.

Figure 3.  Simple effects of synaptic potentiation on cell response to feedforward inputs.  (Left) Before
potentiation, if three active synapses suffice to elicit a response from target cells, then the three darkened cells
will respond to input S (the combined activation of axons b, c, and d), and their active synapses (highlighted)
will potentiate.  (Right) After potentiation, strengthened synapses (enlarged) contribute more voltage change
to a cell whenever activated, so that the same three neurons may now fire in response to reduced inputs P, Q,
and R, which would have been insufficient to elicit responses from these neurons before potentiation.

After potentiation episodes, inputs with highly
overlapping activation patterns tend to educe
identical neuronal response patterns in the cortex.
The result is the mathematical operation of
“clustering,” in which sufficiently similar inputs are
placed into a single category or cluster.  The odor of
a rose, a violet, or a lily might, after long-term
potentiation, elicit only an undifferentiated response
corresponding to “flower scent,” (and different odors
elicit only their cluster responses, e.g., meat scent,
smoke scent).  This can give rise to useful
“generalization” properties, informing the organism
of the category of an otherwise unfamiliar odor, but
somewhat counterintuitively, it prevents the system
from making fine distinctions among members of a
cluster.  These results are almost generic, as many
computational frameworks with very different
characteristics, including competitive networks (e.g.,
von der Malsburg, 1973; Grossberg, 1976;
Rumelhart and Zipser, 1985; Coultrip et al., 1992);
backpropagation (Rumelhart et al., 1986); and
‘dynamical’ or excitatory feedback networks (e.g.,
Hopfield, 1982) can exhibit similar properties.
Complex computations from combined feedforward

and feedback olfactory operation.
Absent from the foregoing analysis is the
extensive inhibitory feedback projection from
cortical neurons to granule cells in the bulb.  This
pathway selectively inhibits those bulb inputs that
generate cluster responses in cortex, thereby
unmasking the remainder of the bulb’s activity.
That remainder becomes the subsequent input to
the cortex on the next activity cycle, whereupon
the same cortical operations are performed.  The
result is that the second cortical response (one
fourth to one eighth of a second later) will consist
of a quite distinct set of neurons from the initial
response, since most of the input components
giving rise to that first response are now inhibited
by the feedback from cortex to bulb.  Analysis of
the second (and ensuing) responses has shown
successive sub-clustering of an input: the first
cycle of response identifies the odor’s
membership in a particular cluster (e.g., floral),
the next response (a fraction of a second later)
identifies its membership in a particular sub-
cluster (rose), then sub-sub-cluster (particular
variety of rose), etc.  Roughly five “levels” of



sub-clustering occur in the simulation before the
inhibitory feedback to the bulb runs its course.  That
is, the system uses an unexpected type of coding
across time, using specific target neurons selectively
activated at a series of different time points, to
discriminate among inputs.

This iterative subclustering activity turned out to be
mathematically characterizable as a novel algorithm
for the well-studied statistical task of hierarchical
clustering.  All such algorithms have differential
costs or complexity in terms of time (number of
mathematical steps) and space (amount of storage)
required per operation performed.  Surprisingly, the
derived olfactory algorithm exhibited computational
costs that compared favorably with those in the
(extensive) literature on such methods (Ambros-
Ingerson et al., 1990; Kilborn et al., 1996).  These

studies represent an instance in which a novel and
efficient algorithm for a well-studied
computational problem emerged from simulation
and analysis of a specific cortical network.  The
method was readily generalized to modalities
other than olfaction.  For instance, input patterns
corresponding to speech sounds yielded naturally
occurring clusters and sub-clusters on successive
samples (Figure 4).  Elaboration of the algorithm
gave rise to families of computational signal-
processing methods whose performance on
complex signal classification tasks has
consistently equaled or outperformed those of
competing methods (interested readers are
referred to: Kowtha et al., 1994; Coultrip and
Granger, 1994; Granger et al., 1997; Benvenuto et
al., 2002).

Figure 4.  Hierarchy created by computer simulation of successive feedforward and feedback activity in an
olfactory bulb-cortex-like structure, operating on spoken sounds rather than on olfactory input.  Each sound
is a letter of the alphabet.  After simulated long-term potentiation, the initial simulated cortical response (1)
does not differentiate among any letters, all of which are similar enough to each other (and different enough
from other auditory inputs, from traffic noises to bird whistles) to belong to a single cluster.  The next
cortical response (2) differentiates “A, J, K” sounds from “B, C, T” sounds, and others.  Successive
responses (3-5) make iteratively finer distinctions.  Eventually each letter belongs to its own sub-cluster.

Biological findings and psychological implications.
If the olfactory system operates in this way, it should
show striking results behaviorally and
electrophysiologically.  Behavioral experiments
showed that rats recognized novel similar odors as
members of a category, yet nonetheless also
distinguished and recognized individual category
members, providing evidence that animals build
unsupervised similarity-based perceptual clusters
(Granger et al., 1991).  Individual olfactory cortical
neurons, measured chronically in behaving animals,
were found to respond selectively when tested on
very different odors.  Moreover, responses were
transient, corresponding to the time course of a
specific sniff cycle, but not to multiple cycles, again
consistent with the computer simulations

(McCollum et al., 1991).  Findings arrived at
under different experimental conditions have
yielded various hypotheses of olfactory function
(e.g., Schoenbaum and Eichenbaum, 1995;
Haberly, 2001).  Studies of unit neuron recordings
in behaving animals have only rarely been carried
out, and further studies will be needed to
discriminate among competing interpretations of
the observed data.

The computational and neurobiological findings
enable the formulation of hypotheses about
psychological function.  Operations emerging
from cortical circuits presumably constitute
elemental psychological acts, and contribute via
combination to more complex mental processes,



in ways not yet understood.  The evocation of
successively finer-grained information about a
stimulus via sequential cortical responses suggests a
fundamental operation of repetitive perceptual
sampling.  Visual, auditory and somatosensory
cortices have anatomical architectures analogous to
the olfactory bulb-cortex template, including
excitatory feedforward and inhibitory feedback
interactions with thalamic nuclei (see Herkenham,
1986; Jones 1998, for reviews).  Perhaps the second
glance of a scene educes qualitatively different
information from the first glance (even when such
“glances” are covert cycles operating within these
cortical structures, rather than behavioral eye
movements).  Humans exhibit synchronized
rhythmic firing during learning and during complex
sensory processing (Caplan et al., 2001; Sobotka and
Ringo, 1997).  And human subjects in perceptual
and conceptual studies robustly recognize objects
first at categorical levels and subsequently at
successively subordinate levels (Mervis and Rosch,
1981; Schlaghecken, 1998; Kuhl et al., 2001),
suggesting the presence of structured memories that
are hierarchically configured and sequentially

traversed during recognition.
Modeling and analysis of other brain areas,
including constituents of the hippocampal
formation, auditory neocortex, the striatal
complex, and thalamo-cortical loops, has yielded
a range of additional, starkly different emergent
fundamental computations for each structure, as
well as novel complex operations from
combinations of these (see, e.g., Lynch and
Granger, 1992; Gluck and Granger, 1993;
Granger et al., 1994; 1997; Myers et al., 1995;
Kilborn et al., 1996; Aleksandrovsky et al., 1996;
1997).  As in the case of the hierarchical
clustering algorithm identified in the olfactory
system, new functions derived from other brain
regions exhibited computational characteristics
comparable to algorithms of known power, often
equaling or surpassing the best extant algorithms
in terms of cost and efficacy.  Moreover, as in the
case of the olfactory system, the results suggested
new interpretations of both simple and complex
psychological operations, intimating the
development of more advanced hypotheses of
human brain function.
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