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Derivation and analysis of basic computational operations of
thalamocortical circuits
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Abstract

B Shared anatomical and physiological features of
primary, secondary, tertiary, polysensory, and
associational neocortical areas are used to formulate a
novel extended hypothesis of thalamocortical circuit
operation. A simplified anatomically-based model of
topographically and nontopographically-projecting
(‘core’ and ‘matrix’) thalamic nuclei and their
differential connections with superficial, middle, and
deep neocortical laminae is described. Synapses in
the model are activated and potentiated according to
physiologically-based rules. Features incorporated
into the models include differential time courses of
excitatory vs. inhibitory postsynaptic potentials,
differential axonal arborization of pyramidal cells vs.
interneurons, and different laminar afferent and
projection patterns. Observation of the model's
responses to static and time-varying inputs indicates
that topographic ‘core’ circuits operate to organize

INTRODUCTION
Neocortex, the largest brain structure in

mammals and allometrically far larger still in
humans, consists of multiple modules that share
substantial architectural properties yet underlie
apparently distinct functions, including the
processing of disparate sensory modalities, motor
behavior, planning, and abstract cognition. Most
cortical regions have strongly reciprocal
connections with thalamic nuclei, suggesting that
thalamocortical circuits may be viewed as an
integral unit of telencephalon. Neurons
throughout neocortex are organized into relatively
stereotypical architectures, with widely shared
rules of operation and plasticity. Although many
cortical studies describe differences among
various cortical regions, it is posited that there are
sufficient shared characteristics to justify attempts
to identify common basic functionality, which
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stored memories into natural similarity-based
hierarchies, whereas diffuse ‘matrix’ circuits give rise
to efficient storage of time-varying input into
retrievable sequence chains. Examination of these
operations shows their relationships with well-studied
algorithms for related functions, including
categorization via hierarchical clustering, and
sequential storage via hash- or scatter-storage.
Analysis demonstrates that the derived
thalamocortical algorithms exhibit desirable
efficiency, scaling, and space and time cost
characteristics. Implications of the hypotheses for
central issues of perceptual reaction times and
memory capacity are discussed. It is conjectured that
the derived functions are fundamental building
blocks recurrent throughout neocortex, which,
through combination, give rise to powerful
perceptual, motor, and cognitive mechanisms. H

may be augmented by special purpose
capabilities in some regions. The present
studies focus on posterior neocortex and its
reciprocal circuits with nuclei of dorsal
thalamus, as distinguished from anterior
neocortex / ventral thalamic circuits, which
involve the striatal complex (basal ganglia)
integrally in the circuit. The regularity of
thalamocortical circuitry has supported
decades of suggestions that it may be
composed of functionally similar or even
identical circuits, differing only, or
predominantly, in their afferent sources and
efferent targets (Szentagothai, 1975; Hubel and
Wiesel, 1977; Creutzfeldt and Nothdurft, 1978;
Mountcastle, 1978; Keller and White, 1989;
Galuske et al., 2000; Gazzaniga, 2000, Castro-
Alamancos and Connors, 1997; Jones, 1998;
Heynen and Bear, 2001; Silberberg et al.,
2002; Valverde, 2002) ).
Computational models related to these

structures have variously focused on
specialized aspects of cortex, selected circuitry
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within cortex, abstractions of cortical or
thalamocortical circuits that contain a small
number of the many key shared features of these
circuits, or mathematical abstractions of
hypothesized cortical function (often inferred
"top-down" from observable behavior). The
present paper explicitly excludes features specific
to any particular region (e.g., primary sensory
areas), focusing rather on the widespread
characteristics shared among primary and non-
primary (secondary, tertiary, polysensory, and
association) cortical areas. The aim is to develop
"bottom-up" hypotheses of widespread
thalamocortical operation addressing the ubiquity
and biological uniformity of these circuits. The
work described here builds on and extends prior
work in our laboratory (Ambros-Ingerson et al.,
1990; Anton et al., 1991; Granger and Lynch,
1991; Coultrip et al., 1992; Coultrip and Granger,
1994; Granger et al., 1994; Aleksandrovsky et al.,
1996; Kilborn et al., 1996; Whitson, 1998;
Shimono et al., 2000; Granger 2002; Benvenuto et
al., 2002; www.BrainEngineering.com). After
introductory sections identifying predominant
shared characteristics that are the foci of these
studies, the models are described in two sections:
one focusing on the predominantly topographic
‘core’ pathway connecting thalamus and cortex,
and one on their equally large diffuse pathways.
The discussion integrates the prior sections into
the beginnings of a coordinated hypothesis of
thalamocortical operation.

ANATOMICAL ARCHITECTURE OF
THALAMOCORTICAL CIRCUITS

Introduction. Table 1 lists primary shared
anatomical and physiological regularities of
neocortex and thalamocortical circuits. The
intentional omission of features such as
sublamination of L.IV, and the many subtypes of
neocortical inhibitory cell, is not meant to imply
that additional functionality might not be
conferred by such variants. Further iteration is in
progress to incorporate additional features, but it
is hoped that simulations incorporating the
panoply of listed features may nonetheless
provide initial insight into possible functionality
of thalamocortical circuits.
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Number of cells. There are (with a few notable
exceptions, such as the primary sensory areas)
approximately 80,000 neurons beneath each
square millimeter of cortical surface,
distributed in a stereotypic manner across the
cortical layers. Despite dendritic elongation in
larger brains, and corresponding increases in
numbers of synaptic contacts among pyramidal
cells, the number of cells stays constant per
region in animals weighing from grams to
kilograms (Rockel et al., 1980).

Cortical cell types. Excitatory (pyramidal)
cells outnumber inhibitory cells by roughly
four or five to one throughout most of cortex,
again excepting the primary sensory areas
(Fitzpatrick et al., 1987; Hendry et al., 1987).
Excitatory neurons have axons that can extend
millimeters whereas inhibitory cells project
only locally (rarely more than 100 pm).
Inhibitory axons synapse densely on or near
pyramidal cell bodies (Keller and White,
1989). In contrast, excitatory cells receive
only sparse afferents from other excitatory
cells; it has been estimated that the probability
of contact between two neocortical excitatory
cells that are 0.2-0.3mm apart is less than 0.1,
and between two such cells that are more than
Imm from each other, p < 0.01 (Braitenberg
and Schiiz, 1998).

Cortical modules. Within architectonic regions
of cortex, neurons are vertically organized into
anatomically defined “pyramidal cell modules”
(Figure 1) consisting of distinct groups of layer
V and layer II-III pyramidal cells whose apical
dendrites are commingled (White and Peters,
1993; Peters et al., 1994). Architectonically
distinguishable areas differ in size and
population of cell layers, and there is
correspondence between these region
boundaries and the site of origin of their
thalamic afferents. (In contrast, functional
"columns" are physiologically defined, in
terms of receptive field properties, rather than
anatomical boundaries (Mountcastle, 1957),
and are typically described as 400-500 um in
extent, comprising perhaps 200 pyramidal cell
modules apiece.)
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Table 1. Selected anatomical and physiological traits shared by multiple thalamocortical regions.

Cortical anatomy

o Number of neurons per layer remains relatively constant across different cortical regions

o O O O

Excitatory (pyramidal) and inhibitory cells occur at roughly a 5:1 ratio.

Pyramidal cells emit long axons with distant targets, as well as local collaterals.

Inhibitory cells have a radius of axonal arborization restricted to only local targets.

Inhibitory cell axons target cell bodies, proximal dendrites, and initial axon segments of local pyramidal cells,

thus powerfully influencing the responsivity of excitatory cells.

O O

Neurons are arranged in layers of superficial (II-11I), middle (IV) and deep (V-VI) cells.
Neurons are vertically organized into pyramidal cell modules containing ~200 neurons.

o Columns of ~200 pyramidal cell modules are spatially localized within topographically defined thalamo-cortico-

thalamic projections.
Thalamocortical anatomy

o Thalamic matrix cells project broadly and diffusely to L.I, contacting apical dendrites of neurons in II, IIl and V.

O O O O O

Physiology & plasticity

<

o O 0 O O

Core thalamic cells project with preserved topographic organization to layers III and I'V.
Middle layer cells (layer IV) project apically to suprajacent layers II-111.

Superficial layer cells (II-III) project basally to subjacent deep layers (V-VI).

Layer V cells project to motor targets and, via collaterals, to thalamic matrix.

Layer VI projects topographically to core, to overlying nucleus reticularis, and to layer I'V.

Synapses from thalamic core to L.IV are plastic during development, and exhibit little or no plasticity in adults.
Synapses of superficial (II-III) and deep layer (V-VI) pyramidal cells potentiate in adults.

Reciprocal excitatory-inhibitory connections within layers yield lateral inhibition.

Excitatory post-synaptic potentials (PSPs) are brief (~15-20 msec).

Inhibitory PSPs are roughly an order of magnitude longer (~100-150 msec).

Thalamic projection neurons. Neurons in
thalamus exhibit immunoreactivity to one of two
Ca'"-binding proteins, calbindin or parvalbumin.
Many recent studies offer convergent evidence
that calbindin cells, widespread throughout
thalamus, project broadly and diffusely to
multiple neighboring cortical regions, synapsing
in layer I, whereas parvalbumin cells, occurring
only in certain thalamic nuclei, give rise to
restricted, topographically organized projections,
each to an individual cortical region, synapsing in
middle cortical layers (Molinari et al., 1995;
Jones, 2001). Adopting the terminology of these
studies, we refer to parvalbumin-immunoreactive
projection cells as thalamic "core" and calbindin
cells as "matrix." This terminology is intended to
extend and elaborate on the long-studied
distinctions in the literature between "specific"
(e.g., MGv, VPL, VPM, LGd), and "nonspecific"
(e.g., MGm, Pul, Pom, AD) nuclei (Killackey &
Ebner, 1972; 1973; Herkenham, 1986; Berendse
& Groenewegen, 1991; DeFelipe and Jones, 1991;
Wyss and VanGroen, 1995; Castro-Alamancos
and Connors, 1997; Jones, 1998, 2001).

Core thalamic projections. Projections from
thalamic core cells synapse on neurons in all
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cortical layers to some extent (Keller and
White, 1989) but predominantly in deep layer
IIT and in layer IV in granular cortex, as well as
on the apical dendrites of layer VI neurons.
These afferents, which preserve topographic
organization, are often described as the
primary input to sensory neocortical regions,
though quantitative anatomical studies report
that these afferents comprise < 6% of the
synapses onto layer IV target cells, with the
majority of the remaining afferents coming
from lateral cortico-cortical connections
(Freund et al., 1985; Freund et al., 1989; Peters
and Payne, 1993; Peters et al., 1994; Ahmed et
al., 1997). Projections from a given thalamic
core region extend to a cortical area roughly
0.5-1.0 mm wide, somewhat larger than the
size of physiologically-delineated functional
columns (Jones, 1981). Layer VI axons
project back topographically to the thalamic
core cells from which they receive inputs, as
well as to the portion of the nucleus reticularis
(NRt) topographically overlying the target core
cells (Liu and Jones, 1999). NRt in turn
generates GABAergic projections to these
thalamic core cells (DeFelipe and Jones, 1991;
Jones, 2001).
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Figure 1. Organization of neocortical modules. Anatomical grouping of apical dendrites of neurons in layers
I, 111, and V, define “pyramidal cell modules” (solid lines) whose layers typically contain the listed numbers
of neurons [White & Peters, 1993]. Functional columns (dotted lines), described physiologically rather than
anatomically, are approximately 400-500 pm in diameter, encompassing perhaps 200 pyramidal cell modules.

Matrix thalamic projections. The afferents from
thalamic matrix neurons predominantly synapse in
layer I, chiefly on the apical dendrites of neurons
from layers II, III, and V. The first detailed
reports on these projections, in which it is
emphasized that they occur as a prevalent feature
of cortical anatomy, describe them as
“nonspecific,” i.e., the projections from a small
thalamic region project to a broad cortical area,
and projections to a small cortical area originate
in a broad expanse of nonspecific thalamus
(Lorente de No, 1938). These early findings have
been confirmed and extended repeatedly
(Killackey and Ebner, 1972; Killackey and Ebner,
1973; Herkenham, 1986; Jones, 1998), and it has
been consistently confirmed that matrix cells
projecting to a given cortical area receive
projections back from layer V of that cortical area,
without intervening NRt contacts (Conley and
Diamond, 1990; Rouiller et al., 1991; Bourassa
and Deschenes, 1995; Deschenes et al., 1998).

Two thalamocortical circuits. Within cortex, the
major vertical projections are from layer IV
apically to layers II and III (Mitani et al., 1985;
Burkhalter, 1989; Schwark and Jones, 1989), and
from these superficial layers basally to layers V
and VI (Schwark and Jones, 1989; Henry, 1991,
Wallace et al., 1991). The projection patterns
described are thus arranged into two large
thalamocortical circuits: 1) topographic
projection of thalamic core cells > middle cortical
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layers > superficial layers > deep layers, with
reciprocal topographic feedback from layer VI
back to both the core cells and to the overlying
portion of nucleus reticularis; 2) matrix cells
projecting nontopographically to layer I and
receiving projections back from layer V,
without interposed nucleus reticularis
projections. Evidence suggests that the
repeating thalamocortical, cortico-cortical, and
corticothalamic projection patterns hold not
only for primary sensory areas including
VPM/VPL, LGd, and MGv to layer IV, and
Pom, LP/Pul, and MGm to layer I of
somatosensory, visual and auditory cortices,
respectively (Killackey and Ebner, 1972;
Ryugo and Killackey, 1974; Ribak and Peters,
1975; Herkenham, 1980; Kelly and Wong,
1981; Swadlow, 1983; Rieck and Carey, 1985;
Herkenham, 1986; Jensen and Killackey, 1987,
Winer and Larue, 1987; Scheel, 1988; Conley
and Diamond, 1990; Rouiller and Welker,
1991; Bourassa and Deschenes, 1995; Huang
and Winer, 2000), but also for a wide array of
thalamic nuclei, intralaminar and
nonintralaminar alike (Jones and Hendry,
1989; Rausell et al., 1992; Molinari et al.,
1994; Molinari et al., 1995; Kuroda et al.,
1998; Mitchell and Cauller, 2001; Rauschecker
et al., 1997; Jones, 1998; Reep and Corwin,
1999; Linke and Schwegler, 2000; Jones,
2001)). For those cortical areas not receiving
topographic projections from thalamus, the
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extensive topography-preserving cortico-cortical
projections from superficial layers to recipient
middle layers with reciprocal projections from the
target's deep layers back to the source's superficial
layers, may subserve a related function (Harth et
al., 1987; Mumford, 1992; Olson and Musil,
1992; Miller 1996; Barbas and Rempel-Clower,
1997; Catania and Kaas, 2001; Batardiere et al.,
2002; Ichinohe and Rockland, 2002; Rockland,
2002; Swadlow et al., 2002).

PHYSIOLOGICAL OPERATION OF
THALAMOCORTICAL CIRCUITS

Sequential circuit activation. Peripheral inputs
activate thalamic core cells which in turn
participate in topographic activation of middle
cortical layers; e.g., ear > cochlea > auditory
brainstem nuclei > ventral subdivision of medial
geniculate nucleus (MGv) > Al; in contrast,
matrix nuclei are most strongly driven by
corticothalamic feedback (Bender, 1983;
Diamond et al., 1992b; Diamond et al., 1992a),
supporting a system in which peripheral afferents
first activate core nuclei, which in turn activate
cortex (via a stereotypical vertical pattern already
described: middle layers > superficial layers >
deep layers), which then activate both core and
matrix nuclei via corticothalamic projections
(Mountcastle, 1957; Hubel and Wiesel, 1977; Di
et al., 1990; Kenan-Vaknin and Teyler, 1994).

Excitatory and inhibitory interaction. Axons of
inhibitory interneurons densely terminate
preferentially on the bodies, initial axon segments,
and proximal apical dendrites of excitatory
pyramidal cells in cortex, and thus are well
situated to exert powerful control over the activity
of target excitatory neurons. When a field of
excitatory neurons receives afferent stimulation,
those that are most responsive will activate the
local inhibitory cells in their neighborhood, which
will in turn inhibit local excitatory cells. The
typical time course of an excitatory (depolarizing)
postsynaptic potential (PSP) at normal resting
potential, in vivo, is brief (15-20 msec), whereas
corresponding GABAergic inhibitory PSPs last
roughly an order of magnitude longer (100-150
msec) (Castro-Alamancos and Connors, 1997).
Thus excitation tends to be brief, sparse, and
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curtailed by longer and stronger feedback
inhibition.

Activity rates. The rate of repetitive activation
in thalamocortical circuits ranges from the
"delta" (1-4 Hz) and "theta" frequency bands
(4-12 Hz or ~80-250 msec per time step)
through the "gamma" range (30-40 Hz or 25-
33 msec per step) (Steriade, 1997; Chrobak
and Buzsaki, 1998; Shimono et al., 2000;
Sarter and Bruno, 2000; Fries et al., 2001;
Rozov et al., 2001; Canales et al., 2002;
Knoblauch and Palm, 2002; Pesaran et al.,
2002). There is strong evidence for ascending
influences (e.g., basal forebrain) on inhibitory
neurons (Freund and Meskenaite, 1992; Gulyas
et al., 1996; Blasco-lbanez et al., 1998; Gulyas
et al.,, 1999) modulating their response
properties, in turn affecting the probability of
response of excitatory cells during the peaks
and troughs of such "clocked" inhibitory
cycles. Evidence of intrinsic rhythmic currents
in thalamic and cortical cells (Kim et al., 1995;
Bush and Sejnowski, 1996; Destexhe et al.,
1999; Zhu and Connors, 1999) is compatible
with extrinsic ascending influences, acting
either independently or in concert with them.
Three modes of activity have typically been
reported for thalamic neurons: tonic, rhythmic,
and arrhythmic bursting. The latter appears
predominantly during non-REM sleep whereas
the first two appear during waking behavior
(McCarley et al., 1983; Steriade and Llinas,
1988; McCormick and Feeser, 1990; Steriade
et al., 1990; McCormick and Bal, 1994;
Steriade and Contreras, 1995). It has been
variously argued that rhythmic burst mode may
provide better signal to noise and thus facilitate
detection of a stimulus, and that tonic mode
contains more detailed information about a
stimulus (Guido et al., 1992; Guido et al.,
1995; Mukherjee and Kaplan, 1995; Sherman,
2001). Others have suggested that distinctions
between modes based on differential
information are not warranted (e.g., Reinagel et
al., 1999).

Spatial codes across multiple time windows.
The question of what "codes" are used to store
and convey information among thalamocortical
circuits is one of the central issues of
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neuroscience. Strong constraints are imparted by
three primary characteristics of thalamocortical
circuits.

* Synchronous activity of wide regions of cortex
(modulated in part by ascending systems
affecting the periodic responsivity of inhibitory
cells) makes the probability of excitatory cell
spiking lower during peak inhibition and
higher during inhibitory troughs.

* The average time course of excitatory
postsynaptic potentials in cortical pyramidal
cells (~ 10-15 msec) limits the temporal
precision of spike trains that such a neuron
may emit.

e Summation characteristics and integration
(e.g., capacitance) time constants of dendrites,
map many distinct spike train input patterns
into nearly indistinguishable postsynaptic
voltage transients, severely limiting the
temporal precision with which a target neuron
can "read" differences among slightly-different
spike trains (Magee, 2000; Magee and Cook,
2000).

It is thus hypothesized here that information is
passed largely by spatial patterns of activity
occurring during recurring windows of relatively
low inhibition, during activity that is
approximately synchronous. Moreover, different
spatial patterns at successive activity peaks (over
the course of tens to hundreds of milliseconds)

may convey distinct information about a single
input.

Glutamatergic synapses. As shown in Figure
2, the vast majority of excitatory synapses are
glutamatergic. An excitatory axon targeting
the apical dendrite of an excitatory cell
typically terminates at a spine, which contains
~500-1000 AMPA- and NMDA-type
glutamate receptors (Bekkers and Stevens,
1989). An average neocortical pyramidal cell
in humans reportedly receives 25-80 thousand
such afferents (Cragg, 1967; Rockel et al.,
1980; Braitenberg and Schiiz, 1998 pp. 190-
191), (with a few notable exceptions such as
area 17, which has an unusually high density
of neurons per square mm and a
correspondingly low number of synapses per
neuron (Cragg, 1967; O'Kusky and Colonnier,
1982)), and typical methods may lead to
systematic undercounting of synapses
(Guillery and Herrup, 1997; von Bartheld,
1999, 2001). In certain regions, notably
thalamus and layer IV cortex, as well as
glutamatergic synapses onto inhibitory
neurons, the NMDA receptors contain the (rare
in the adult) NR3A subunit (Wong et al.,
2002), which has been shown to inhibit the
expression of NMDA receptor ion channels
(Das et al., 1998).

GABA (1.9)
£,/ Acetylcholine (1.7)
= .- Catecholamine (0.5)
- “Serotonin (0.3)

" Glutamate (28)

Figure 2. Measured quantities (in picomoles per mg) and relative percentages of the most common types of

receptors in mammalian brain (quantities shown are for mouse).

Neocortical synaptic potentiation. NMDA-
dependent long-term potentiation of synaptic
connections in neocortex has been shown in
superficial and deep layers of multiple regions
(Komatsu et al., 1988; Hirsch and Crepel, 1990;
Iriki et al., 1991; Bear and Kirkwood, 1993;
Kirkwood et al., 1993; Kimura et al., 1994;
Castro-Alamancos et al., 1995; Hess et al., 1996;
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Kudoh and Shibuki, 1996; Buonomano and
Merzenich, 1998; Rioult-Pedotti et al., 2000;
Heynen and Bear, 2001; Seki et al., 2001).
Memories that are rapidly induced (i.e., with
little or no practice), long lasting (potentially
for decades) and high-capacity (enough to hold
the memories of a lifetime) presumably require
a biological mechanism with corresponding
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characteristics. Biological phenomena that last
only for limited duration (decrementing over
time), or are slow to induce (e.g., minutes of
constant stimulation), or are not synapse-specific
(and thus not high capacity) may underlie some
form of short-term memory (or other operation)
but not rapidly-induced, high-capacity long-term

memory, an important type of memory and the
one under study in the present work. "LTP"
here refers specifically to the endogenously
occurring synaptic phenomenon that has the
properties just listed, enabling it to serve as the
substrate of lifelong memories.
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Figure 3. Key features of anatomical organization of thalamocortical circuits to be modeled (See text.) Core
thalamic cells project topographically to layer IV and III of particular cortical areas; from these arise projections to
superficial layer cells (II-III), which in turn project to deep layers (V-VI). Matrix cells project broadly and non-
topographically to multiple cortical areas, synapsing in layer I on the apical dendrites of layer II, III and V cells.
Layer V cells generate nontopographic projections back to matrix; layer VI cells project to core and to overlying
(GABAergic) nucleus reticularis, which in turn project to core thalamic cells. (Left) Organization of layers and
projections. (Right) Simplification of the circuit projection patterns.

SIMPLIFICATION AND MODELING

Simplified operation. Based on the biological
regularities specified, a greatly simplified set of
operations is posited (Table 2) with the intent of
illustrating a hypothesis of fundamental
processing steps carried out by thalamocortical
circuits in response to sequential inputs.

Features and thalamocortical modules. The
topography of the connections from the
periphery to Ct and from Ct to cortical L.IV are
assumed to have correspondences with feature
sets occurring in the periphery, or
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generalizations of these arising from
combinations of features. For initial regions of
visual cortex, for instance, these might consist of
center-surround features, line segments with
different orientations, with increasingly complex
features arising from combinations of these.
Downstream regions (secondary and onward)
are hypothesized to consist of more complex
features abstracted from combinations of earlier
features. For purposes of illustration, divisions
of thalamus and cortex according to features will
be designated via arbitrary feature sets denoted
by letters.
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Table 2. Simplified steps in thalamocortical operation.

1) First input from periphery topographically activates core nucleus (Ct).

i) Ct topographically activates corresponding middle layers.

iii) Activated middle layer modules vertically activate corresponding suprajacent layers.
iv) Output from superficial layers topographically activates deep layers.

V) Diffuse feedback from L.V output to matrix nucleus (Mt).
vi) Topographic feedback from L.VI output to NRt and to Ct, selectively inhibiting the portion of the

input corresponding to the cluster response.

vii)  Next input (or portion of input) arrives; Ct topographically activates middle, superficial, deep layers.

viii)  Layer V receives combination of nontopographic input from Mt, produced by prior input, and
topographic activation from superficial layers produced by current input.

iX) Intersection of these inputs selects sparse L.V response and synaptic potentiation.

X) Repeat steps v) to ix) until input completed.

Activation sequence. For instance, in response
to an input stream consisting of arbitrary
primitive features A-B-C, the system first
activates the region or regions of Ct
corresponding to the feature ‘A,” which activates
first layer IV, then II-III, and then V-VI of the
corresponding cortical regions. Then L.VI sends
feedback topographically to Ct and to the
overlying inhibitory NRt, selectively inhibiting
that portion of the input but allowing through
whatever feature came next (in this case, ‘B’);
while L.V sends diffuse feedback to Mt,
generating a deterministic but nontopographic
activation pattern in Mt. That pattern is then
sent from Mt broadly and diffusely to superficial
and deep layers of cortex, while the next input
(‘B’) is sent topographically from Ct to cortex.

At the intersection of the two activation patterns,
potentiation is presumed to occur. In this
instance, the nontopographic Mt pattern arising
from L.V feedback due to feature ‘A’ will be
‘stored’ in the topographic region corresponding
to the pattern for input feature ‘B.’

Repetition of this series of operations constructs
a chain of stored features, whereby the Mt
activation pattern for the first feature (A) is
stored in the topographic location for B, the Mt
pattern arising from B is stored in the
topographic location for C, etc.
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Core thalamocortical circuit: Iterative
hierarchical clustering

Lateral inhibition and synaptic potentiation in
superficial layers. Simulated superficial cells
that initially respond to a particular input pattern
become increasingly responsive not only to that
input but also to a range of similar inputs (inputs
that share many active lines, e.g., small
Hamming distances from each other), such that
similar but distinguishable inputs will come to
elicit identical patterns of output from layer II-
III cells, even though these inputs would have
given rise to slightly different output patterns
before potentiation.

Clustering. These effects can be described in
terms of the mathematical operation of
“clustering,” in which sufficiently similar inputs
are placed into a single category or cluster. This
can yield useful generalization properties, but
somewhat counterintuitively, it prevents the
system from making fine distinctions among
members of a cluster. For instance, four images
(Figure 4, top row) initially elicit four slightly
different patterns of cell firing activity in layer
II-IIT cells (middle row) but after repeated
potentiation episodes, all four images elicit
identical activation patterns (bottom row).
Results of this kind have been obtained in a
number of different models with related
characteristics (von der Malsburg, 1973;
Grossberg, 1976; Rumelhart, 1985; Coultrip et
al., 1992).
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Figure 4. Examples of patterns of initial superficial layer cell response to similar but slightly different inputs
(top), both before (middle row) and after (bottom row) potentiation episodes. Before potentiation, slightly
different inputs elicit slightly different patterns of cell responses. After potentiation, these inputs all elicit

identical or nearly identical response patterns.

Iterative hierarchical clustering. Superficial
layer responses activate deep layers, and output
from layer VI initiates feedback activation of
nucleus reticularis (NRt), which in turn inhibits
the core thalamic nucleus (Ct). Since, as
described, topography is preserved throughout
this sequence of projections, the portions of Ct
that become inhibited will correspond
topographically to those portions of L.II-III that
were active. On the next cycle of
thalamocortical activity, the input (e.g., image)
will arrive at Ct against the background of the
inhibitory feedback from NRt, which has been
shown to last for hundreds of milliseconds
(Huguenard and Prince, 1994; Cox et al., 1997,
Zhang et al., 1997). Thus we hypothesize that
the predominant component of the next input to
cortex is just the uninhibited remainder of the
input; whereupon the same operations as before
are performed. The result is that the second
cortical response will consist of a quite distinct
set of neurons from the initial response, since
most of the input components giving rise to that
first response are now inhibited. Analysis of the
second (and ensuing) responses in computational
models has shown successive sub-clustering of
an input: the first cycle of response identifies the
input’s membership in a general category of
similar objects (e.g., flowers), the next response
(a fraction of a second later) identifies its
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membership in a particular subcluster (thin
flowers; flowers missing a petal), then sub-sub-
cluster, etc. Thus the system repetitively
samples across time, differentially activating
specific target neurons at a series of successive
time points, to discriminate among inputs.

Operation of the algorithm. An initial version of
the method arose from studies of feedforward
excitation and feedback inhibition in the
olfactory cortex and bulb (Ambros-Ingerson et
al., 1990; Anton et al., 1991), and was readily
generalized to non-olfactory modalities (e.g.,
vision, audition) whose superficial layers are
closely related to those of olfactory cortex,
evolutionarily and structurally (Granger and
Lynch, 1991). Figure 5 illustrates an instance of
the organization of figures into hierarchies by
successive superficial layer cortical responses.
If the figure indicated by the double underline
were shown to the model, its first cortical
response would be identical for any of the
figures shown; its second response (tens to
hundreds of milliseconds later) would be
specific to the figures on the far left, and its third
response would be specific to just the individual
image itself. Thus the sequence of cortical
responses reads out information corresponding
to stepwise traversal through hierarchically
organized perceptual memories.

Journal of Cognitive Neuroscience 16:5, pp. 856-877
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Figure 5. Sample hierarchy of images, shown via embedding (left) and via a hierarchical tree (right.) All
images share certain features, e.g., six petals plus center (outermost or top-level cluster), yet each differ in
ways that group them into natural sets, e.g., presence of darkened petals, different fill patterns (middle level
clusters), as well as containing specific combinations of features differentiating them from others (most

embedded or bottom-level individuals).

Complexity and application. The method can be
cast as an algorithm (see Methods section). The
costs of the algorithm for the performance of
hierarchical clustering on arbitrary inputs
compare favorably with those in the (extensive)
literature on such methods (Ambros-Ingerson et
al., 1990; Gluck and Granger, 1993; Kilborn et
al., 1996). Elaboration of the algorithm has
given rise to families of computational signal
processing methods whose performance on
complex signal classification tasks has
consistently equaled or outperformed those of
competing methods, e.g., (Coultrip and Granger,
1994; Kowtha et al., 1994; Granger et al., 1997,
Benvenuto et al., 2002).

Matrix thalamocortical circuit: High-capacity
sequence storage and retrieval

Nontopographic organization. In contrast to the
topography-preserving projections between Ct
and cortex, the diffuse projections from L.V to
Mt and from Mt back to cortex are modeled as
sparsifying and orthogonalizing their inputs, i.e.,
any structural relationships that may obtain
among inputs are not retained in the resulting
projections. Thus input patterns in Mt or in L.V
that are very similar may result in very different

Rodriguez, Whitson, Granger, 2004

output patterns (and similar output patterns can
arise from quite different inputs). As has been
shown in previously published studies, due to
the nontopographic nature of layer V and Mt
activity, synapses are very sparsely selected in
layer V to potentiate; i.e., relatively few storage
locations (synapses) are used per
storage/learning event (Granger et al., 1994;
Aleksandrovsky et al., 1996; Whitson 1998).

Storage of category sequence. When the system
is presented with a static input, such as the
flowers above, superficial layer cells produce an
iterative series of hierarchically related
responses to the input as described, and these
responses will activate deep layer cells, some of
whose synapses will potentiate (Figure 6). The
sequence of responses ‘learned’ in layer V
corresponds to sparsified codes assigned to the
sequence of hierarchical outputs produced by
layers II-III. If a learned sequence is presented
again, the system will produce the sequence of
responses that occurred during learning of the
input, retrieving first information about the
cluster, then subcluster, etc.

Journal of Cognitive Neuroscience 16:5, pp. 856-877
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Figure 6. Sequential operations at three successive time steps (t=1,2,3) in middle (M), superficial (S), and
deep (D) cortical layers, core and matrix thalamic projections (Ct & Mt), and inhibitory nucleus reticularis
thalami (NRt —), in response to a static input (a specific flower image, shown at left). a) At time t=1, most
prominent features of the input image (flower) are transmitted via topographically activated regions of core
thalamic nucleus Ct to corresponding regions of middle cortical layer (M), to superficial layer (S). b)
Superficial layers (S) activate deep layers (D) which topographically inhibit active core cells Ct (via layer VI
to GABAergic NRt) and nontopographically excite matrix cells Mt (via layer V). ¢) The superficial layer
cortical response will be identical for any of a number of similar images, corresponding to membership in a
cluster. d) At time t=2 (next synchronized activity peak), the same image arrives at Ct in the presence of
long-lasting inhibition from NRt; thus different core cells "win" the race to fire, topographically exciting
different regions of middle and superficial cortical layers. These new responses thus correspond to
secondary features of the input that appear now that the primary features are "masked" by inhibitory
feedback. e) Deep layers learn the sequence of superficial layer responses. f) This second superficial layer
response corresponds to members of a sub-cluster in the hierarchy. g), h), i) Analogoustod, e, f.
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Response to time-varying inputs i.e., transitions among inputs (e.g.,
somatosensory cortex (Peterson et al., 1998),
auditory cortex (Recanzone et al., 2000), visual
cortex (Rols et al., 2001; Bair et al., 2002) ).
Figure 7 illustrates the operation of the system
for a sequence of inputs a, b, c.

Time-varying inputs. The above analysis
described the operation of the system in
response to static inputs (e.g., a fixed gaze on a
fixed image). If the input is changing over time,
or if the input is scanned a portion at a time
(e.g., via saccades), then the same steps
occurring in the circuit (Table 2) produce a
related but different effect. Cortical pyramidal
cells preferentially respond to onsets and offsets,

Convergence of deep layer inputs. The
activation of layer V in rapid sequence via
activation by superficial layers (in response to an

Rodriguez, Whitson, Granger, 2004 Journal of Cognitive Neuroscience 16:5, pp. 856-877



element of a sequence) and via activation by Mt
(corresponding to feedback from previous
element in sequence) selects responding cells
sparsely from the most activated cells in the
layer (Coultrip et al., 1992) and selects synapses
on those cells sparsely as a function of the
sequential pattern of arriving inputs. Thus
synapses potentiated at a given step in layer V
correspond to the input occurring at that time
step together with orthogonalized feedback
arising from input just prior to that time step
(Aleksandrovsky et al., 1996; Whitson, 1998).

Input-specific responses; novelty detection. The
overall effect is "chaining" of elements in the
input sequence, via the "links" created due to
layer V activity from coincident inputs
corresponding to current and prior input

elements. As in the operating rule described by
(Granger et al., 1994), the sparse synaptic
potentiation enables the cells in layer V to act as
a novelty detector, selectively responding to
those strings that have previously been
presented. Whereas superficial layer cells in the
model respond to any of a number of sufficiently
similar inputs (the "clustering" effect described
earlier), the deep layer cells respond only to the
input sequences that have actually occurred
previously, due to the orthogonalizing input
from Mt combining with superficial layer input.
Thus the layer V activation patterns even for
very similar input sequences will be very
different from each other, or, put differently, the
probability that two similar input sequences will
elicit similar sequences of layer V patterns is
low.
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Figure 7. Sequential operations in cortical and thalamic models in response to time-varying input. In
the example, a sequence of input patterns corresponds to an aperture passing left to right across an
image (upper left) with sampling occurring at successive synchronous activity peaks in thalamocortical

circuits.

Since the input at time 2 is different from the input at time 1, a different pattern of cortical

regions will respond, and as before, the ordered sequence of superficial layer responses will be learned

by the deep layer.

Rodriguez, Whitson, Granger, 2004
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Chained sequence memory. Figure 8 illustrates
the implicit data structures created by the
operation of the system: trees in which initial
elements of sequences branch to their multiple
possible continuations ("tries," Knuth, 1997).
As a result, sufficient information exists in the
stored memories to permit completion of
arbitrarily long sequences from just prefixes that
uniquely identify the sequence. Thus the
sequence "Once upon a time" may elicit (or
"prime") many possible continuations whereas

L

CAT . . ./

"Four score and seven" or "Now is the time for
all good men" elicit specific continuations.
Once activation of a unique prefix has occurred,
completion of the remainder of the sequence can
be achieved by a number of means. The only
potentiated synapses activated at the end of the
prefix are those that became potentiated during
storage of the sequence. Selective response of
those cells will elicit the same Mt response as
had occurred in the sequence.

CATACHRESIS

E CATALEPSY
'—_E;-;LCATALEXIS
A CATALOG
M_E:CATAMJTE
CATAMOUMT
E cATAPULT
A CATHARSIS
~— CATHECT
1D cATHEDRAL

B CcaATHERSIN
L CATHETER

&) o =
o CATHODE
L caovic

Figure 8. Data structures implicitly constructed by sequence storage in layer V. Letter sequences in the model
are intended to represent sequences of arbitrary features as described in the text.

Analysis of thalamocortical circuit algorithm

Measures of required storage. The resulting
algorithm (see Methods) can be characterized in
terms of computational storage methods that are
used when the number of actual items that occur
are far fewer than those that could in principle
occur. For instance, the number of possible
eight-letter sequences in English is 26° =
200,000,000,000, yet the eight-letter words that
actually occur in English number less than
10,000, i.e., less than one ten-millionth of the
possible words. A storage area capable of
storing all possible eight-letter words would
require the huge commitment of 26° storage
locations, more than 99.999999% of which
would remain forever unused. Since it is not
known in advance which of the possible
sequences will occur in the language and which

Rndviouor Whitcnn Granoor 2004

will not, space cannot be pre-assigned for
specific sequences.

Efficient storage via hash functions. The
sparseness of stored entries (the extremely low
ratio of actual to possible data) leads to a very
widely-used and well-studied form of data
storage in which occurring items are mapped
directly to a storage location via a "scatter-
storage" or "hash" function (so termed for its
typical method of using mixtures of an item's
features to compute its location). Hash
functions enable large amounts of data to be
stored with extreme efficiency (typically
requiring only a fixed small number of
operations to store each new word) in a very
compact space. The methods operate by
assigning words directly to a storage location,
but their efficiency depends on the absence of
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"collisions," i.e., two words being mapped to the
same location. For hash functions, there is a
tradeoff between the speed of storing a new
entry and the space required for the storage: the
smaller the space allocated to hold the entire
dictionary, the higher the likelihood of
collisions.

Storage and collision. A hash function cannot
guarantee that collisions will not occur, so either
"collision-resolution" mechanisms must be in
place, or the method will be unable to guarantee
perfect memory of every input. The
hypothesized distribution of L.V patterns to Mt
and vice versa bears quantitative correspondence
to the operation of a hash function that lacks a
collision-resolution scheme, i.c., a hash function
in which it is possible for multiple inputs
erroneously to map to the same output, and thus
for memory errors to occur. Estimates can be
made of the rate of errors of retrieval of stored

S

sequences, as a function of the size of the
network and the number of sequences stored.

Simplified model. In the model, each of the
columnar modules in cortex that can be
differentially targeted by topographic input from
Ct can represent a feature which may appear in
any sequence, such as sequences of oriented line
segments, sequences of Braille dots, etc.
(Letters of the alphabet are used in the examples
herein for illustrative convenience, not because
implications for linguistic applicability are
intended.) Figure 9 outlines the simulation of
just layer V and Mt. Layer V is divided into
modules corresponding to topographic features.
Each module consists of synapses that can be
either naive or potentiated. Each input element
selects a columnar module or modules via the
topographic mapping from the model Ct. If
input feature "P" arrives at time t;, and input
"A" at t; , the model layer V output arises
deterministically from the sequence "P-A."

Figure 9. Simplified model of interaction across time steps between layer V and the thalamic matrix Mt.
Layer V is divided into modules corresponding to topographic features. Each module consists of synapses that
can be either naive or potentiated. Each input element selects a columnar module or modules via the
topographic mapping from Ct. Each vertical column in the figure represents a cell; each compartment
represents a synapse on that cell's apical dendrites. If input feature "P" arrives at time t;, layer V of the model

will produce vector Ap, a computed hash code representing the cell activity output that would be elicited from

layer V by this input. This becomes input to Mt, which returns a hash function of its input, ¢(Ap). That in
turn becomes input from Mt to cortex on the subsequent time step, t,. If the extrinsic input at that time step is
feature "A," then the corresponding topographic module(s) will be activated, the synapses in layer V of that
module that are activated by the input from Mt are potentiated, and the model layer V output arises
deterministically from the sequence "P-A." The processing continues until the end of the input sequence,

creating a "chained" memory selective to the input.

Rodriguez, Whitson, Granger, 2004
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Theoretical analysis of errors of retrieval. As
input sequences appear and are "stored" via the
methods described, the L.V networks "fill up"
with potentiated synapses as a function of the
number of times that the corresponding feature
occurs in the sequences. Synaptic potentiation
"stores" an input, and activation of a previously
potentiated synapse "retrieves" that stored input.
Errors of retrieval occur whenever a novel
sequence is erroneously recognized as having
been previously seen. This can occur whenever
the components of other sequences occur in a
new sequence. If synapses X1, Xp, X3, Y1, Yo,
Ys, and Zi, Z,, Z3 have been potentiated by
sequences X-Y and X-Z, then sequence Y-Z will
erroneously be recognized as though it had been
seen before. If there are o synapses in a given
L.V network, then there is a 1/0 chance that any
given synapse will be already potentiated, and
thus the probability of that not occurring, i.e., an
as-yet-unused synapse selected, is U=(1-1/0).
For a distinct cortical modules, each containing
o layer V synapses,  of which are potentiated
for each new individual input item stored, the
probability of selecting an as-yet unused synapse

for each new input is U "/a. After W sequences
of length L have been learned, the probability of
all constituent inputs having selected new

synapses is Py =U MEE A fter these data have
been stored, then when a new input occurs, there
is a chance of P, =1- P, that the new input

will erroneously activate previously potentiated
synapses and thus be falsely recognized
(Granger et al., 1994, eq.1; Aleksandrovsky et
al., 1996; Whitson, 1998). As before, if m
synapses are, on average, activated for each
element of an input sequence, and each sequence
contains on average L elements, then the
probability of false recognition of a new string is
the probability of finding m potentiated synapses

Rodriguez, Whitson, Granger, 2004

for each of the L inputs in the sequence,

L
approximately Py, = P;) .

Empirical studies of model capacity. Figure 10
illustrates the pattern of information "stored" in
a small model thalamocortical system. Panel a)
illustrates the 'memory' of a system with just 50
synapses in each of 26 modules, after storage of
200 six-letter sequences. It can be seen that
many of the attempted potentiation episodes
collided, i.e., potentiation was attempted on
synapses that were already fully potentiated, and
thus much of the attempted storage did not occur
successfully; retrieval errors will result. Panels
b and c illustrate the same model but with 100
synapses per module. This network exhibits
relatively fewer collisions after storage of the
200 sequences (b), but storage of 400 sequences
into the same network causes many collisions
(c). Panel (d) graphs the probability of retrieval
errors occurring in these small memory circuits
as a function of the number of sequences that
have been stored in them. The left curve
corresponds to retrieval error probabilities for a
network with o = 50 synapses per module (i.e.,
50 x 26 = 1300); the right curve is for a network
with o = 100 synapses per module (thus 100 x
26 = 2600). For the left-hand curve, the error
probability remains extremely low (p < 0.01)
until about 125 sequences have been learned, at
which point the errors begin to rise. Thus this
small network can successfully learn and
retrieve about 125 sequences, effectively
packing sequences consisting of more than 125 x
6 = 750 letters into just 1300 bits of storage, or,
on average, about 1.7 bits to successfully store
the name and sequential position of each letter.
The right-hand curve shows roughly 250
sequences learned with low error: ~250 x 6 =
1500 letters stored in 2600 bits of storage space,
again less than two bits per storage event.

Journal of Cognitive Neuroscience 16:5, pp. 856-877
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Figure 10. Rate of potentiation of synapses in thalamocortical model. Each large rectangle represents the state

of the "memory" of the model after potentiation in response to a number of inputs.

Each vertical column

represents a "module" (see text); each element (row) in a column corresponds to the synapses in that column.
The color of each synapse indicates the number of times potentiation has been attempted at that synapse (legend
upper left). At white locations, no potentiation has occurred; at other locations there have been multiple attempts
to potentiate a given synapse (collisions). a) Collision rate in a model with o = 50 synapses in each of 26
modules, after storage of 200 six-letter sequences. b) Collisions in a model with o = 100 synapses in each of 26
modules, after storage of 200 six-letter sequences. ¢) The same model as in b, after storage of 400 sequences. d)
Theoretical values of the probability of retrieval error as a function of sequences stored in the two models (0=50

and 0=100).

Experiments with a larger model. Figure 11
shows the empirical (points) and theoretical
(curves) probabilities of retrieval errors in a
larger network, consisting of 100,000 synapses
per module. Approximately 75,000 sequences
(of length 20) are learned before the retrieval
error probability climbs beyond 0.01; i.e.,
75,000 x 20 = 1,500,000 letters are stored in
2,600,000 bits, again requiring roughly 1.7 bits
to store information about each letter and its
sequence position, without exceeding p <0.01 of
retrieval error. Two theoretical curves are

Rodriguez, Whitson, Granger, 2004

shown, corresponding to five synapses versus
four synapses potentiated per input element.
Empirical results (points) are shown for 5 = 5,
but as the network becomes loaded, the
probability of collisions increases, lowering the
effective number of previously unpotentiated
synapses that become potentiated at each step,
whereas in each theoretical curve, all synapses
potentiated at each step were previously
unpotentiated (see Whitson 1998).

Journal of Cognitive Neuroscience 16:5, pp. 856-877
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Figure 11. Probability of retrieval errors as a function of number of sequences stored in a relatively large model. The
network consists of 26 columnar modules, each containing 100,000 layer V-cell synapses. Inputs are sequences of 20
letters (L=20). Theoretical curves are shown for values of n=4 and n=5; empirical values are shown for storage of
120,000 and 160,000 20-letter sequences, potentiating five synapses per input (n=5). See text for discussion.

DISCUSSION

Summary. A novel extended hypothesis of
shared basic functions of thalamocortical circuits
is derived from their shared anatomical designs,
physiological operating patterns, and plasticity
rules. A simplified model thalamocortical
system is introduced and its responses to static
and to time-varying information are described.
Examination of the resulting simplified storage
and retrieval operations shows their relationship
with well-studied algorithms for related
functions, including categorization via
hierarchical clustering, and sequential storage
via hash encoding. Comparison of the new
algorithms against their standard computational
counterparts illustrates that the derived
thalamocortical algorithms exhibit desirable
efficacy, scaling, and space and time cost
characteristics.

Rodriguez, Whitson, Granger, 2004

Components modeled. Operation of the model
is based on the known anatomical and
physiological patterns of the topographic (core
thalamus > middle cortical layers > superficial
layers > deep layers > nucleus reticularis > core
thalamus) and diffuse (matrix thalamus > layer |
> layer V > matrix thalamus) circuits
reciprocally connecting thalamus and cortex.
Plasticity is assumed to occur in cortical
glutamatergic synapses via long-term
potentiation, in a low-precision manner
(synapses are potentiated from initial to full
strength, i.e., only a single bit of information is
conveyed). Shared characteristics are the focus
of the work, and thus features specific to certain
cortical regions (e.g., sublamination of layer IV
in primary sensory cortical areas) are explicitly
omitted. As a result, no attempt is made to study
differential functions that might be conferred by
these special features.

Journal of Cognitive Neuroscience 16:5, pp. 856-877



Response to static inputs. Recurrent feedback in
the model from cortical layer VI to the thalamic
reticular nucleus topographically inhibits
activated thalamic core cells, iteratively
"masking" features of an input to which the
cortex has responded, thus eliciting subsequent
responses to secondary and then tertiary portions
of the input over successive rapid activation
steps. Similar inputs come to elicit similar or
identical responses from the first cycle of
operation of the thalamocortical model, whereas
subsequent cycles, respond differentially to the
differences among even very similar inputs.
Over trials, stored memories of static inputs
become spontaneously organized into a
hierarchy of similarity-based clusters, sub-
clusters, and sub-subclusters. In response to a
stimulus, the model produces a series of
responses that traverse the hierarchy, describing
the input at successively finer-grained levels.
For more than one response to an input to be
produced, the input must be present over more
than one cycle of thalamocortical operation. For
cycles occurring in the gamma frequency range,
an input need be present for just 25 msec per
cycle; for cycles at theta frequencies, inputs
must be present for 200 msec per cycle. If
inputs change more rapidly than the extant
activity cycle of the synchronized circuits, then
only a single response (e.g., category) to each
input (e.g., each element in a sequence) can
occur.

Response to time-varying inputs. The proposed
mechanism is consistent with widespread
observations of synchronous thalamocortical
activity. In response to changing inputs, the
model divides continuous input into time
segments as a function of its cyclic operating
rates, from gamma to theta. The diffuse forward
and backward connections connecting layer V
and thalamic matrix select synaptic storage sites
that do not retain the topography of their inputs,
thus spreading the resulting record widely over
the target synaptic fields. The codcurrence of
thalamic core input from a current stimulus, with
matrix input arising from layer V feedback from
the immediately prior stimulus, gives rise to
"chaining" of stored elements, such that the
ordered sequence of inputs, rather than an
unordered set, is selectively stored and retrieved.

Rodriguez, Whitson, Granger, 2004

(Since the output of superficial layers
corresponds, as described, to clusters or
categories of similar inputs, the sequences stored
in layer V are actually sequences of categories.)
Formalization of the method illustrates its
relation to a well-studied family of algorithms
that map inputs to storage locations
nontopographically via "hash" functions, which
rapidly and efficiently allocate storage without
significant wasted space. Analysis showed that
the capacity of a given network was linearly
related to its size, indicating that very large
networks achieve the same rate of synaptic use
as small networks (Granger et al., 1994; Whitson
1998).

Generality of the findings. Against the
background of substantive similarity of many
cortical areas, intriguing differences have
recently been demonstrated (Galuske et al.,
2000; Elston and Rockland, 2002; Read et al.,
2002), raising questions of the extent to which
these differences indicate subtly different
genetic designs for different cortical regions,
versus divergence arising during development
due to differential stimulation patterns presented
to initially similar cortical structures.

Behavioral implications. An observed property
of the model is that perceptual recognition, i.e.,
distinguishing among similar complex items,
occurs not as a separable operation, but rather as
a special case of the larger system for sequential
categorization of inputs. Almost any damage to
the model will differentially spare early
responses more than later ones, impairing
categorization less than recognition. The
model’s operation specifically predicts that
hierarchically organized stimuli will give rise to
a) more errors and b) increased latency in
recognition of members of subcategories.
Animals show this pattern (Granger et al., 1991),
and experiments on human subjects are being
carried out to test these predictions on stimuli of
the type used by Reber et al. (1998a,b) who
report that visual cortical areas show less
activity when subjects are asked to categorize
images than when asked to recognize them.
Intriguingly, anterior cortical areas (as opposed
to sensory regions) exhibit more activity during
categorization than recognition. Human subjects
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robustly recognize objects first at "basic"
categorical levels (e.g., bird, screwdriver) and
subsequently at successively subordinate levels
(sparrow, Phillips screwdriver) (Mervis, 1981;
Schlaghecken, 1998; Kuhl, 2001). Experts (e.g.,
birdwatchers) exhibit faster recognition of
objects in their areas of expertise, suggesting the
learning of corresponding idiosyncratic “basic”
or “entry” levels of recognition. (Since
successive read-outs from this system arise from
masking of prior inputs, the system distinguishes
among mixtures of different components, but not
among mixtures of different amounts of the
same components.) Significant differences in
short categorization vs. longer recognition
reaction times (Jolicoeur et al., 1984) are
concordant with hypotheses of structured
perceptual memories that are hierarchically
configured and sequentially traversed during
recognition. Synchronized electrical brain
activity recorded during complex sensory
processing (Sobotka, 1997; Caplan, 2001) is
consistent with a cyclic mechanism underlying
these sequential recognition steps.

Physiological implications. The sparse and
highly distributed storage of time-varying inputs
in the model suggests that localization of cortical
activity may not be a feature of typical sensory
processing, possibly rendering the task of
identifying the site of storage of particular
memories intractable. The model specifically
predicts that there exist cortical neurons which,
after familiarization with a set of members of a
perceptual category (e.g., images), will exhibit
nonlinear "categorical" behavior: they will
respond selectively either to all the members of
that category or to none of them. At each
successive cycle of physiological activity, a cell
will respond, or not, to all members of a
category or subcategory, etc. Some
experimental data on this question exist and
support the prediction, in the modality of
olfaction in rodents (McCollum et al., 1991)
and, recently, vision in primates (Freedman et
al., 2001). (Moreover, work in progress
suggests anterior cortico-striatal production of
categorical cortical neuronal signaling in
response to perceptual stimuli for which
reinforcement information has been acquired via
basal ganglia.)
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Cortico-cortical extension. Outputs of
superficial layers of many cortical regions
combine to become input to middle and
superficial layers of downstream regions, whose
deep layers in turn send reciprocal feedback to
the originating superficial layers (Barbas and
Rempel-Clower, 1997; Saleem et al., 2000;
Catania and Kaas, 2001; Batardiere et al., 2002;
Swadlow et al., 2002). Cortico-cortical
processing may differ substantially from
thalamocortical operations, though recent single-
axon tracing studies indicate that the terminal
arbors from cortico-cortical (superficial to
middle layer) projections are about the same size
as geniculocortical terminations in layer IV of
primary visual cortex (Rockland, 2002),
suggesting a potential relation between
thalamocortical inputs to primary sensory cortex
and corticocortical inputs to downstream cortex.
It is anticipated that the resulting statistical
recombination of sequence elements will give
rise to sequences of categories, abstracting from
fixed brief feature sequences to templates
applicable to a range of longer and more
complex inputs.

Data structures linking object components. The
steps carried out by the model enable

coordinated deposition of distributed
information, offering a potential alternative to
some computational hypotheses of the function
of cyclic (e.g., gamma) activity. The "binding"
problem (in which it is posited that co-
oscillating brain regions may signal relationships
among distributed stored parts of a coherent
representation) arises in some models from the
need to associate separate aspects of the
representation of a single item (e.g., from stored
features wheel, leg, car, and table, to the fact that
it is the car that has wheels and the table that has
legs). In the model envisioned here, salient parts
of inputs are recognized independently; the
relative relationships (e.g., relative distances and
angles) among the parts are stored as elements
of a sequence; and recognition proceeds via such
a sequence, serially reconstructing relations
among the constituent features, which may be
sequentially traversed during visual saccades.
Multiple different sequences of features may
correspond to any given object, depending on
the order of saccades that occur, and some
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features might be present in some views and not
others, such as different angles or occlusions.
Hierarchically constructed categories of
sequences would correspond to the union of the
different possible traversals, defining the object.
Elaboration and expansion of auditory
telencephalon in mammalian brain preceded that
of vision. The shared anatomical characteristics
of their circuits, and the sequential nature of
complex visual processing hypothesized here,
suggests possible origins of visual processing
from auditory precursors.

Hypothesis. Functions of neural-like networks
have included simple clustering, generalization,
Boolean operations, and novelty detection, with
more complex operations arising, if at all, from
the combination and interaction of multiple
simpler systems. It is conjectured that the
derived thalamocortical functions forwarded
here (hierarchical clustering and sequential hash-

for input X
for C € win(X,W)
Wj <=Wj+k(X—C)
end for
X <= X — mean(win(X,W))
end for

or scatter-storage) are fundamental building
blocks whose recurrence throughout neocortex
give rise to powerful systems for perceptual,
motor, and cognitive processing through
combination of these components. Two primary
features not modeled in the present paper are the
patterns of cortico-cortical connectivity linking
different neocortical regions, and subcortical
connections (especially the extensive cortico-
striatal circuits coupled with anterior neocortex).
Each is the subject of ongoing work, anticipated
to yield additional classes of computation.

METHODS

Formalization of core circuit operation. The
iterative subclustering activity of the
connections between core thalamic nuclei and
cortex has been simplified and mathematically
characterized as a novel algorithm for the well-
studied statistical task of hierarchical clustering:

[where X = input vector; W = layer I weight matrix; C = winning column vector (superficial
layer cell) in W; k = learning rate; win(X,W) = most responsive column vector in W that
respond to X before lateral inhibition, e.g., Aj, max(X + W) .]

Formalization of matrix circuit operation.
Simplification enables the algorithmic behavior
of the matrix circuit in response to the
presentation of arbitrary time-varying input to be
estimated. For purposes of this analysis,

for input sequence X(L)

synapses will be assumed to be binary (either
naive or potentiated), and the mechanisms
described thus far will be simplified to the
following algorithmic steps:

for C € TopographicSuperficialResponse(X(L))

for V(s) e C N MtResponse(X(L-1))

Potentiate( V(s) )

Mt(L) < NontopographicDeepResponse(V)

end for
end for
end for

[where L is the length of the input sequence; C = columns activated at step X(L); V(s) is the
synaptic vector of a layer V cell, Mt(L) is response of matrix thalamic nucleus to feedback

activation pattern from layer V.]

Rodriguez, Whitson, Granger, 2004
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In this algorithm, a sequence of length L elicits a
pattern of response according to the core
algorithm given above. Each activated
superficial cell C in turn activates deep layer
cells. Feedforward activity from the matrix
thalamic nucleus Mt (inactive at the time of the
first input item in the sequence, and active from
then on) also activates layer V. Synapses on
cells receiving activation from both sources (the
intersection of the two inputs) become
potentiated, and the activity pattern in layer V is
fed back to the matrix nucleus Mt. The loop
repeats for each of the L items in the sequence,
with the input activity from each item interacting
with the activity in Mt from the previous step.
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