
Name _____________________________________ ID# ___________________

 1

Sample Final

Chapter 7 Only

Name _____________________________________ ID# ___________________

 2

PART A

1. For each of the MIPS code sequences below, state if the memory accesses show: temporal
locality, spatial locality, both or neither.

(a) li $t0, 100
 LOOP: lw $t1, 19196($s0)
 lw $t2, 0($s0)
 addi $t0, $t0, -1
 bne $t0, zero, LOOP

(b) li $t0, 100
 LOOP1:
 li $t1, 4
 LOOP2:
 add $t2, $s0, $t1
 lb $s1, 0($t2)
 addi $t1, $t1, -1
 bne $t1, zero, LOOP2
 addi $t0, $t0, -1
 bne $t0, zero, LOOP1

(c) li $t0, 100
 LOOP:
 lw $s1, 0($t0)
 addi $t0, $t0, -1
 bne $t0, zero, LOOP

2. How many bits are needed to implement a direct mapped cache with i index bits, t tag bits
and block size of B bits?

3. If a cache requires N bits to implement and can store n bits of data, the space overhead is

defined as N − n. Assuming a 32-bit address, consider a direct-mapped cache capable of
holding B blocks of data, where each block contains b bytes (both B and b are powers of
two). What is the space overhead for this cache?

Name _____________________________________ ID# ___________________

 3

4. Suppose the cache in the previous problem is modified as follows: it is now a 2k-way

associative cache, capable of holding the same number of bits of data as the cache in the
previous problem. What is the space overhead now?

5. For what value of k would the space overhead be maximized? When would you want to

choose such a cache?

PART B

1. Multiple-byte blocks

A new processor has a direct-mapped cache capable of holding B bytes of data in total, and each
block of the cache contains b bytes of data (both B and b are powers of two). How many bits does
it take to implement the cache?

2. The Mystery of the big B and the little b

We want to figure out what the values of B and b are for the new processor using the following
code excerpt

// We will choose values for LENGTH and STEP
char a[LENGTH];
int i, j, temp;

for(i = 0; i < 10000; i++)
 for(j = 0; j < LENGTH; j = j + STEP)
 temp = temp + a[j];

Name _____________________________________ ID# ___________________

 4

Part 1: Suppose STEP is initially 1.

(a) If LENGTH ≤ B, how many cache misses would we expect each time the outer for loop is
executed?

(b) How would things change if we increased LENGTH until it became larger than 2B?

(c) What would happen if we kept increasing LENGTH?

Part 2: Suppose we fix LENGTH to some value larger than 2B, and increase STEP:

(a) If STEP is less than b, how many cache misses would we expect each time the outer for loop
is executed?

(b) After STEP equals b, what would happen if we kept increasing STEP?

Part 3: Experimentation time

We ran some experiments, varied the values of LENGTH and STEP, and computed the average
memory-access time (AMAT) in the statement

temp = temp + a[j];

The table below lists the AMAT (in nanoseconds) for different values of LENGTH and STEP.
Note that the time measurements are not perfectly accurate, so there may be some fluctuations in
the data:

Name _____________________________________ ID# ___________________

 5

 STEP
LENGTH 1 2 4 8 16 32 64 128

8 53 50
16 47 51
32 54 49 50
64 168 275 502 52

128 108 506 497
256 101 272 507 498

Drawing inferences from the data:

(a) What is the value of B? Explain your answer.

(b) What is the value of b? Explain your answer.

(c) What is the approximate time for a cache hit?

(d) What is the approximate time for a cache miss?

(e) Fill in the missing table entries with reasonable values.

