

Eliminating Nondeterminism to Enable Chip-Level Test of
Globally-Asynchronous Locally-Synchronous SoC’s

Matthew Heath, Wayne Burleson, University of Massachusetts Amherst
Ian Harris, University of California Irvine

{mheath, burleson}@ecs.umass.edu, harris@ics.uci.edu

Abstract

Globally asynchronous locally synchronous (GALS)

clocking applied to a system-on-a-chip (SoC) results in a
design in which each core is a synchronous block (SB) of
logic whose locally generated clock has an independent
frequency and phase. Data is exchanged between cores
using an asynchronous communication protocol. The
nondeterministic synchronization strategies used by most
GALS architectures makes chip-level silicon debug and
functional test difficult and costly. Deterministic GALS
methodologies make dataflow assumptions which are
valid in a very limited set of applications. This paper
describes a novel deterministic GALS methodology called
“synchro-tokens”. Parameterized wrapper logic with
enough flexibility to be useful for a wide range of systems
is added to the asynchronous input signals of SBs. The
wrapper ensures that each transition, although arriving
at the wrapper at a nondeterministic time, is sensed by
the SB during a deterministic cycle of the local clock
while the system remains globally asynchronous.
Synchro-tokens supports synchronous debug and test
methodologies, including those based on 1149.1 and
P1500, which rely on deterministic system behavior.

1. Nondeterminism

A system specification defines a sequence of states and
outputs which must be produced in response to a given
input sequence. A correct implementation must conform
to this specification. If the specification includes don’t-
care bits and partially ordered sequences, there may be
many possible responses which a correct implementation
may exhibit. A deterministic implementation always
chooses the same correct response sequence. A
nondeterministic one, on the other hand, randomly
chooses a correct response sequence which may differ
when the input sequence is applied to multiple copies of
the chip or repeatedly applied to one copy of the chip.

The principal sources of nondeterminism are mutual
exclusion elements and their close cousins arbiters and
synchronizers. The output sequence of these circuits
depends on the relative order of input transitions, which is
in turn sensitive to variables such as clock frequencies,
clock skew, process variation, and noise. These circuits
make the fully asynchronous and GALS systems in which
they are used nondeterministic. It should be noted that
these circuits are also vulnerable to metastability, the
condition where a bistable state is neither 0 nor 1 for a
period of time. Metastability is a special case of
nondeterminism which occurs when the temporal
separation of the input signal transitions is very small.
The lack of metastability does not imply determinism.

A synchronous design methodology which disallows
the use of nondeterministic circuits produces
deterministic systems. Delay-insensitive combinational
logic uniquely defines the next state and outputs as a
function of the current state and inputs. Any
nondeterminism arising from setup or hold time
violations is considered an error even if the resulting
sequence conforms to the higher-level specification.

Thus, each SB in a GALS system produces a
deterministic output sequence in response to a given input
sequence. However, the use of synchronizers and/or
arbiters in a SB makes its input sequence
nondeterministic because the relative transition times of
clocks and asynchronous signals are neither known nor
controlled. Consequently, its internal state and output
sequences are also nondeterministic.

In both deterministic and nondeterministic systems, the
precise transition times of each state bit may vary, so that
the total state of the system at a particular time instant
may be non-unique. However, it is the unique sequence
of states, not the instantaneous values of the states, which
is the hallmark of deterministic behavior.

Nondeterminism negatively impacts debug and test by
making the known good response of the system non-
unique. In a GALS system with hundreds of
asynchronous bits switching for thousands of clock
cycles, the number of possible state sequences

combinatorially explodes. Finding all possible traces
consumes test creation time and is not feasible for
sequential ATPG or manually-written tests. Storage of
the possible responses costs die area (for BIST) and/or
tester memory [1]. Comparing test results with all
possible responses costs test time. If a fault effect maps
to some other correct response, coverage is lowered.
Divide-and-conquer test modes in which the synchronous
and asynchronous components are decoupled and tested
separately [2] do not enable functional testing and silicon
debug at the chip and board levels [3]. Waiting for the
test to reach a naturally deterministic state before
checking the response provides insufficient observability.
Event-based testers [4] which do not map signal
transitions to specific clock cycles are still challenged by
non-unique sequences of transitions. Intelligent protocol-
checking testers might be able to address the non-unique
sequence problem, but today’s large installed base of
synchronous testers do not have such a capability, and the
capital cost of replacing them is prohibitive.

2. Previous Work

Most existing GALS methodologies are
nondeterministic because they use arbiters or
synchronizers. Some sample all SB inputs with
synchronizers with internal metastability detectors which
stop the local clock until the metastability resolves itself
[5] or which don’t update their outputs if the metastability
persists for too long [6]. Others use bundled data
signaling and arbitrate between incoming requests and the
local clock in a variety of ways: using the clock as a non-
persistent arbiter input [7], generating a clock disable
signal [8], or inserting an arbiter directly into the ring
oscillator [9] [10].

Chapiro showed how to design a GALS “escapement
organization” [11] without synchronizers and arbiters,
instead using handshake signals to control a stoppable
clock. Prior to the cycle during which a handshake is
expected, the local clock remains enabled and insensitive
to the state of the handshake signal. At the prescribed
time, clock control is passed to the handshake signal. If
the handshake has already occurred, clock control is
immediately passed back to the synchronous logic,
leaving the clock enabled. Otherwise, the clock
synchronously stops until the handshake occurs. Because
the clock enable interrupts the ring oscillator instead of
simply gating its output, the handshake can restart the
clock asynchronously with no runt pulses and return
control to the synchronous logic. Because they don’t
decide whether to wait for an asynchronous signal or
proceed with another local clock cycle, escapement
organizations force a deterministic relative order of
asynchronous transitions and clock edges, and thus

deterministic state sequences in their synchronous logic.
An escapement design of a DSP chip [12] completes all
local processing of a previous input data word, stops the
clock, and waits for the next asynchronous data word to
appear at its inputs. Determinism was neither a stated
goal nor a recognized benefit of the DSP chip design.
This GALS methodology is useful only for applications
with low bandwidth communication between SBs.

Synchronizers can be avoided during steady-state
operation by propagating data through a self-timed FIFO
between the two SBs as in STARI [13]. To prevent the
FIFO from asynchronously becoming empty or full, it is
initialized to roughly half full and data is added to it and
removed from it every cycle. The SB clocks must be
derived from a common source in order to be frequency-
matched. Since the skew between the two SB clocks is
absorbed inside the FIFO, each end always appears to be
synchronized to the local clock. Another unintentionally
deterministic methodology, it constrains the rates of
output data production and input data consumption.

3. Making GALS Deterministic

In general, for a GALS system to be deterministic,
each SB must know, in advance, during which local clock
cycle each transition on each of its asynchronous inputs
will occur. The SB must not recognize a transition if it
occurs earlier than expected, and it must stop the local
clock if a transition occurs later than expected. Of
course, such complete knowledge is never available in
practice; indeed, its existence would imply that the inputs
carry no information and thus aren’t even needed!
Fortunately, however, this knowledge can be inferred for
all inputs if it is available for select inputs and if the
timing relationship between those and all other inputs is
known.

First, the inputs of a SB can be divided into two sets:
data signals which carry information in their logic levels
and handshake signals which carry information in their
transition times. The data signals can then be bundled to
the handshake signals, with timing verification used
during design to ensure that the logic level of a data
signal at the time of a transition of its associated
handshake signal is deterministic.

Second, all handshake signals with a common source
SB and a common destination SB can be bundled to a
single master handshake signal. Again, careful design
ensures that the values of all bundled handshake signals at
the time of a transition of the master handshake signal are
deterministic. The master handshake can control the
stoppable clock in an escapement organization.

Optionally, the asynchronous data and handshakes
bundled to the master handshake can be pipelined with a
self-timed FIFO. This allows multiple data words to be

transferred between SBs with each master handshake.
However, care must be taken to prevent a FIFO which has
been emptied from asynchronously becoming non-empty
or a FIFO which has been filled from asynchronously
becoming non-full. The most straightforward safeguard
is to make access to the FIFO mutually exclusive for the
two SBs connected to it, using the master handshake
signal to decide which is enabled.

4. Synchro-Tokens System Architecture

“Synchro-tokens” is a novel deterministic GALS
methodology which adds parameterized wrapper logic to
the SBs as shown in A. Data is transferred
between SBs through asynchronous communication
channels which may be pipelined with self-timed FIFOs.
Each channel has its own request and acknowledge
handshake signals which accompany arbitrarily wide
bundled data words. For each pair of SBs with at least
one communication channel between them, a token ring
with a node inside each SB’s wrapper acts as the master
handshake signal. Each node counts local clock cycles to
determine when the token is expected to arrive and when
it should depart. A SB may have any number of nodes,
and each node may be associated with any number of
communication channels propagating data in either
direction. One SB in the system is designated as the Test
SB and one or more SBs are designated as I/O. These
SBs are synchronized to and communicate with the

environment (a board or a tester) without any intervening
wrapper logic. Standards 1149.1 and P1500 can be
implemented with the Test SB and self-timed scan chains
whose heads and tails are synchronized to the test clock.
Custom debug and test hooks can take advantage of
synchro-tokens FIFOs and token rings for controllability,
observability, and clock manipulation.

4.1. Wrapper Logic Design

Figure 1
Figure 1

Test SB

I/O
SB

Self-Timed
FIFOs

Token
Ring

Wrapper

Internal
Scan Chain

Test
FIFO

1149.1
TAP

System
I/O

SB
SB

SB

Boundary
Scan Chain

To
ke

nI
n

To
ke

nO
ut

Clk

SBclken

Va
lid

Fu
ll

R
eq Ac

k
D

at
a

D
at

a

Node

Synchronous Block

Output
FIFO

Token
Ring

FclkenFclken

Synchronous Interface

Asynchronous Interface

Clk

Stoppable Clock

Node
SBclken

Token
Ring

R
eq Ac

k
D

at
a

Input
FIFO

Em
pt

y

D
at

a
FIFO

Interfaces

Clk

Fclken

 Figure 1: A. Synchro-tokens system architecture. B. Wrapper logic.

The wrapper logic, which consists of a node for each
token ring, an interface for each FIFO, and one stoppable
clock, is shown in B.

The stoppable clock is a ring oscillator whose
frequency can be digitally controlled with either variable
delay inverters or a clock divider circuit on its output.

The node is a synchronous state machine clocked by
the SB’s stoppable clock. The node connects to the token
ring through the TokenIn and TokenOut signals. The
node produces a FIFO clock enable, Fclken, for the local
interfaces of its associated FIFOs. The node also
generates a stoppable clock enable, SBclken; the enables
from all nodes in the SB are ANDed together so that the
clock stops when any node de-asserts its SBclken.

Each node contains a pair of decrementing counters,
called the hold counter and the recycle counter, which
control the arrival and departure of the token. Each
counter is parallel loadable from a dedicated register,
which in turn may be downloadable from ROM bits,

fuses, or directly from the tester. The hold counter
determines how many local clock cycles the node holds
the token before passing it to the other node on the token
ring. While the token is being held, both SBclken and
Fclken are asserted. The recycle counter determines how
many local clock cycles after passing the token to the
other node it expects to get the token back. While the
token is recycling, SBclken is asserted but Fclken is not.
This allows multiple SBs to operate concurrently and
other FIFO interfaces of the same SB to be enabled if
their nodes are holding their tokens.

The operation of the node state machine is illustrated
in Figure 2. When the incoming token has arrived (A)
and the recycle counter reaches zero (B), the Fclken
signal enables the interfaces of the node’s associated
FIFOs (C). The hold counter decrements by one for each
local clock cycle (D). When the hold counter reaches
zero, it immediately presets to its original value (E), the
token is passed (F), and the FIFOs are disabled (G). The
recycle counter then decrements by one for each local
clock cycle (H). If the token has not yet returned by the
time the recycle counter reaches zero, SBclken is de-
asserted (I), synchronously stopping the local clock (J).
When the token returns (K), the clock is asynchronously
restarted (L). A late token stops the clock not only to the
associated node but to the entire SB, even if there are
other nodes which are holding (M) or recycling.

The FIFO interfaces process the handshakes needed to
ensure that each transmitted data word is received exactly
once. While the associated node is holding that ring’s
token, it is permitted but not required for data exchange
between the SB and the FIFO to occur. An input FIFO
interface receives asynchronous requests and informs the

SB when the FIFO is empty. An output FIFO interface
produces asynchronous requests when valid synchronous
data is available and informs the SB when the FIFO is
full. Each stage of the FIFO must be able to complete a
four-phase handshake within one local clock cycle of the
transmitter or sender SB. Additionally, because the FIFO
handshakes are bundled to the token, data must propagate
through the FIFO fast enough that data added to its tail
just before the departing token disables the tail interface
reaches the FIFO’s head before the token enables the
head interface.

4.2. Debug and Test Features

The core of the Test SB is a Test Access Port (TAP)
and associated controller which is 1149.1 compliant. The
clock of the Test SB is provided by the tester through the
TCK pin. The test clock has two modes of operation,
similar to [14]. In Interlocked Mode, tokens passing
through the Test SB may stop the clock; data exchange
between the tester and the mission mode logic is
deterministic. Interlocked Mode is best suited for on-
tester debug and production test. In Independent Mode,
the operation of TCK and the flow of tokens through the
Test SB have no effect on each other, but communication
with mission mode logic is nondeterministic.
Independent Mode is appropriate for off-tester usage of
TAP public instructions and for mission mode (where
TCK never toggles).

Self-timed shift registers can be used for the boundary
scan chain, P1500 registers in the core wrappers, internal
scan chains for ATPG or BIST, or controls for other
custom features. Adding several empty stages to the tail

TokenIn

TokenOut

Clk

SBclken

Fclken

Hold
Counter

4 3 2 1 4 3 2 1 4

Recycle
Counter

3 2 1 0 6 5 4 3 2 0 6 51

A

E

G

B

D
C

4

F

H

I
L

K

M

J

Figure 2. Waveforms illustrating operation of the node state machine.

of the chain allows both ends of the chain to be
synchronized to TCK. Making the hold, recycle, and
clock frequency registers in each system SB accessible
through a scan chain facilitates system performance
tuning and clock frequency shmooing to find critical
paths within SBs.

Component Area (2-input gates)
FIFO interface 12 + 4.5*(number of data bits)
FIFO stage 4 + 4.5*(number of data bits)
Node 145

Table 1. Synchro-tokens component area models.

System clocks can be stopped while TCK is in
Interlocked Mode by holding tokens indefinitely in the
Test SB and waiting for all of the recycle counters in the
system to reach zero and deterministically stop the local
clocks. The granularity of these natural breakpoints can
be increased - all the way to single stepping if desired -
by adding token rings between more of the system SBs
and the Test SB, and by changing the values of the hold
and recycle registers. After the system clocks have been
stopped, the asynchronous scan chains can be used to
deterministically read and write system state.

The impact of synchro-tokens on throughput and

latency is due to each FIFO being accessible by only one
SB at a time. For a worst-case analysis, synchro-tokens
can be compared with STARI. In the synchro-tokens
system, let the hold register value of both nodes be H, and
let the recycle register value of both nodes be R (the
smallest value which prevents the local clock from
stopping due to a late token). In both systems, let the
period of both clocks be T and the propagation delay of
one FIFO stage be F. Also in both systems, let the FIFO
depth be H, so that the FIFO depth equals the hold
register value of the synchro-tokens system and the FIFO
depths of both systems are equal.

5. Results

The throughput of the STARI FIFO is 1 data word per
cycle, while that of the synchro-tokens FIFO is at most
H/(H+R). The synchro-tokens system can match the
throughput of STARI by increasing the channel width by
a factor of at least (H+R)/H and providing hardware
within the SB to synchronously queue data produced
while the FIFO interface is disabled. Obviously, this is
an area/performance tradeoff.

The deterministic behavior of synchro-tokens was
demonstrated using Verilog, whose ability to specify
nonzero delays and concurrent events made it a
convenient validation platform. The test case was a
system composed of three SBs and six FIFOs. Nominal
values for FIFO delays, token ring delays, and local clock
frequencies were chosen such that the token returned
exactly when expected – never early and never late.
Scenarios in which one or more of the delays could
change to 50%, 75%, 150%, or 200% of their nominal
values were simulated. The data sequences on each SB’s
I/Os were monitored for the first 100 local clock cycles
and compared with the data sequences associated with the
nominal delay settings. In all simulations – over 16,000
of them – all data sequences were found to match exactly.
However, when the synchro-tokens control logic was
bypassed by forcing the FIFO interfaces and local clocks
always to be enabled, the data sequences were observed
to be nondeterministic.

The latency LSTARI of the STARI FIFO, which is kept
roughly half full, is the FIFO delay for the empty half of
its stages plus one data word per clock for the full half of
its stages:

LSTARI = F*H/2 + T*H/2 (1)

In this analysis, the synchro-tokens FIFO is repeatedly
filled by the transmitter and emptied by the receiver. Its
latency LSYNCHRO is the sum of the time from when data is
ready at the transmitter FIFO interface until the token is
passed, plus the token delay (which is approximately
equal to the FIFO delay), plus the time until data is
available at the receiver FIFO interface:

The area overhead of synchro-tokens has been
approximated using a gate-level model of the wrapper
logic and layouts from a 0.25-micron cell library [15].
Summing the areas of the library cells used in the wrapper
logic and using the average area of the library’s 2-input
gates as the unit of measurement, the models shown in
Table 1 have been developed. A comparison with
another GALS implementation should not include the
FIFO components, since the FIFO interface is always
needed to ensure error-free transmission of asynchronous
data, and the FIFO stages are always optional. Since
there is just one pair of nodes for each pair of
communicating SBs, the system-wide area overhead is
reasonably low.

LSYNCHRO = T*(R+H+1)/2 + F*H + T*(H+1)/2 (2)

Clearly, the latency of the synchro-tokens FIFO can be
minimized by decreasing the period of the clocks and the
hold register value (recall that the recycle register is
already a minimum value). This causes the token to be
passed more frequently, but decreases the throughput.

Even though synchro-tokens has a performance
penalty compared with STARI, its power comes from its
ability to be optimized for different dataflow profiles and
its deterministic behavior which is maintained even if the
actual data fails to follow that profile.

A synchro-tokens system may deadlock if there is a
cyclic dependency among a set of SBs in which each SB
has stopped its clock to wait for a late token [17].
Whether or not deadlock occurs is deterministic; thus, no
detection or recovery methodology is needed. A set of
deadlock-preventing design rules which govern the
choice of hold and recycle register values for a given
system topology has been formally derived. The details
are beyond the scope of this paper.

6. Conclusion and Future Work

Synchro-tokens, a novel GALS design methodology,
has been presented. Its deterministic behavior facilitates
debug and test, while its parameterization makes it useful
for a wide variety of dataflow profiles. Compatibility
with IEEE Standards 1149.1 and P1500 and other
common test and debug methodologies has been shown.
The deterministic behavior and the test and debug
features have been validated in Verilog. Its area overhead
has been shown to be modest. Its performance impact has
been analyzed in terms of its parameters.

Future research includes SPICE simulations of the
synchro-tokens control logic and the implementation of a
larger system for further performance studies. Formal
methods need to be applied to prove that synchro-tokens
enforces deterministic behavior. Performance-improving
methodology enhancements also need investigation.

7. References

[1] Y. Zorian, E. Marinissen, and S. Dey. “Testing
Embedded-Core Based System Chips”. Proceedings of
the 1998 International Test Conference, pp 130-143.
[2] F. Gurkaynak, T. Villiger, S. Oetiker, N. Felber, H.
Kaeslin, and W. Fichtner. “A Functional Test
Methodology for Globally-Asynchronous Locally-
Synchronous Systems”. 8th International Symposium on
Asynchronous Circuits and Systems (ASYNC 2002).
[3] D. Josephson, S. Poehlman, and V. Govan. “Debug
Methodology for the McKinley Processor”. Proceedings
of the 2001 International Test Conference, pp 451-460.
[4] J. Katz and R. Rajsuman. “A New Paradigm in Test
for the Next Millennium”. Proceedings of the 2000
International Test Conference, pp 468-476.
[5] F. Rosenberger, C. Molnar, T. Chaney, and T.-P.
Fang. “Q-Modules: Internally-Clocked Delay Insensitive
Modules”. IEEE Transactions on Computers, Vol. 37,
No. 9, September 1988, pp. 1005-1018.
[6] W. S. VanScheik and R. F. Tinder. “High Speed
Externally Asynchronous / Internally Clocked Systems”.
IEEE Transactions on Computers, Vol. 46, No. 7, July
1997, pp. 824-829.

[7] S. Kim and R. Sridhar. “Hierarchical Synchro-
nization Scheme Using Self-Timed Mesochronous
Interconnections”. 1997 IEEE International Symposium
on Circuits and Systems, pp. 1824-1827.
[8] W. Lim. “Design Methodology for Stoppable
Clock Systems”. IEE Proceedings, Vol. 133, Part E, No.
1, January 1986, pp 65-69.
[9] K. Yun and A. Dooply. “Pausible Clocking-Based
Heterogeneous Systems”. IEEE Transactions on VLSI
Systems, Vol. 7, No. 4, December 1999, pp. 482-488.
[10] J. Muttersbach, T. Villiger, and W. Fichtner.
“Practical Design of Globally-Asynchronous Locally-
Synchronous Systems”. ASYNC 2000, pp. 52-59.
[11] D. Chapiro. “Globally-Asynchronous Locally-
Synchronous Systems”. PhD Thesis, Stanford University,
Report No. STAN-CS-84-1026, Oct. 1984.
[12] P. Nilsson and M. Torkelson. “A Monolithic
Digital Clock-Generator for On-Chip Clocking of Custom
DSP’s”. IEEE Journal of Solid-State Circuits, Vol. 31,
No. 5, May 1996, pp. 700-706.
[13] M. Greenstreet. “Implementing a STARI Chip”.
Proceedings of the 1995 IEEE International Conference
on Computer Design, pp. 38-43.
[14] D. Bhavsar, D. Akeson, M. Gowan, and D. Jackson.
“Testability Access of the High Speed Test Features in
the Alpha 21264 Microprocessor”. Proceedings of the
1998 International Test Conference, pp. 487-495.
[15] J. Sulistyo and D. Ha. “Developing Standard Cells
for TSMC 0.25um Technology under MOSIS DEEP
Rules”. Department of Electrical and Computer
Engineering, Virginia Tech, Technical Report VISC-
2002-02, April 2002.
[16] V. Iyengar, K. Chakrabarty, and E. J. Marinissen.
“Test Wrapper and Test Access Mechanism Co-
Optimization for System-on-a-Chip”. Journal of
Electronic Testing: Theory and Applications (JETTA),
Vol. 18, April 2002, pp. 213-230.
[17] A. Datta and S. Ghosh. “Deadlock Detection in
Distributed Systems”. Ninth Annual International
Phoenix Conference on Computers and Communications,
1990, pp 131-136.

	Nondeterminism
	Previous Work
	Making GALS Deterministic
	Synchro-Tokens System Architecture
	Wrapper Logic Design
	Debug and Test Features

	Results
	Conclusion and Future Work
	References

