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Abstract 

 
Globally asynchronous locally synchronous (GALS) 

clocking applied to a system-on-a-chip (SoC) results in a 
design in which each core is a synchronous block (SB) of 
logic whose locally generated clock has an independent 
frequency and phase.  Data is exchanged between cores 
using an asynchronous communication protocol.  The 
nondeterministic synchronization strategies used by most 
GALS architectures makes chip-level silicon debug and 
functional test difficult and costly.  Deterministic GALS 
methodologies make dataflow assumptions which are 
valid in a very limited set of applications.  This paper 
describes a novel deterministic GALS methodology called 
“synchro-tokens”.  Parameterized wrapper logic with 
enough flexibility to be useful for a wide range of systems 
is added to the asynchronous input signals of SBs.  The 
wrapper ensures that each transition, although arriving 
at the wrapper at a nondeterministic time, is sensed by 
the SB during a deterministic cycle of the local clock 
while the system remains globally asynchronous.  
Synchro-tokens supports synchronous debug and test 
methodologies, including those based on 1149.1 and 
P1500, which rely on deterministic system behavior. 

1. Nondeterminism 

A system specification defines a sequence of states and 
outputs which must be produced in response to a given 
input sequence.  A correct implementation must conform 
to this specification.  If the specification includes don’t-
care bits and partially ordered sequences, there may be 
many possible responses which a correct implementation 
may exhibit.  A deterministic implementation always 
chooses the same correct response sequence.  A 
nondeterministic one, on the other hand, randomly 
chooses a correct response sequence which may differ 
when the input sequence is applied to multiple copies of 
the chip or repeatedly applied to one copy of the chip. 

The principal sources of nondeterminism are mutual 
exclusion elements and their close cousins arbiters and 
synchronizers.  The output sequence of these circuits 
depends on the relative order of input transitions, which is 
in turn sensitive to variables such as clock frequencies, 
clock skew, process variation, and noise.  These circuits 
make the fully asynchronous and GALS systems in which 
they are used nondeterministic.  It should be noted that 
these circuits are also vulnerable to metastability, the 
condition where a bistable state is neither 0 nor 1 for a 
period of time.  Metastability is a special case of 
nondeterminism which occurs when the temporal 
separation of the input signal transitions is very small.  
The lack of metastability does not imply determinism. 

A synchronous design methodology which disallows 
the use of nondeterministic circuits produces 
deterministic systems.  Delay-insensitive combinational 
logic uniquely defines the next state and outputs as a 
function of the current state and inputs.  Any 
nondeterminism arising from setup or hold time 
violations is considered an error even if the resulting 
sequence conforms to the higher-level specification. 

Thus, each SB in a GALS system produces a 
deterministic output sequence in response to a given input 
sequence.  However, the use of synchronizers and/or 
arbiters in a SB makes its input sequence 
nondeterministic because the relative transition times of 
clocks and asynchronous signals are neither known nor 
controlled.  Consequently, its internal state and output 
sequences are also nondeterministic. 

In both deterministic and nondeterministic systems, the 
precise transition times of each state bit may vary, so that 
the total state of the system at a particular time instant 
may be non-unique.  However, it is the unique sequence 
of states, not the instantaneous values of the states, which 
is the hallmark of deterministic behavior. 

Nondeterminism negatively impacts debug and test by 
making the known good response of the system non-
unique.  In a GALS system with hundreds of 
asynchronous bits switching for thousands of clock 
cycles, the number of possible state sequences 



 

combinatorially explodes.  Finding all possible traces 
consumes test creation time and is not feasible for 
sequential ATPG or manually-written tests.  Storage of 
the possible responses costs die area (for BIST) and/or 
tester memory [1].  Comparing test results with all 
possible responses costs test time.  If a fault effect maps 
to some other correct response, coverage is lowered.  
Divide-and-conquer test modes in which the synchronous 
and asynchronous components are decoupled and tested 
separately [2] do not enable functional testing and silicon 
debug at the chip and board levels [3].  Waiting for the 
test to reach a naturally deterministic state before 
checking the response provides insufficient observability.  
Event-based testers [4] which do not map signal 
transitions to specific clock cycles are still challenged by 
non-unique sequences of transitions.  Intelligent protocol-
checking testers might be able to address the non-unique 
sequence problem, but today’s large installed base of 
synchronous testers do not have such a capability, and the 
capital cost of replacing them is prohibitive. 

2. Previous Work 

Most existing GALS methodologies are 
nondeterministic because they use arbiters or 
synchronizers.  Some sample all SB inputs with 
synchronizers with internal metastability detectors which 
stop the local clock until the metastability resolves itself 
[5] or which don’t update their outputs if the metastability 
persists for too long [6].  Others use bundled data 
signaling and arbitrate between incoming requests and the 
local clock in a variety of ways:  using the clock as a non-
persistent arbiter input [7], generating a clock disable 
signal [8], or inserting an arbiter directly into the ring 
oscillator [9] [10]. 

Chapiro showed how to design a GALS “escapement 
organization” [11] without synchronizers and arbiters, 
instead using handshake signals to control a stoppable 
clock.  Prior to the cycle during which a handshake is 
expected, the local clock remains enabled and insensitive 
to the state of the handshake signal.  At the prescribed 
time, clock control is passed to the handshake signal.  If 
the handshake has already occurred, clock control is 
immediately passed back to the synchronous logic, 
leaving the clock enabled.  Otherwise, the clock 
synchronously stops until the handshake occurs.  Because 
the clock enable interrupts the ring oscillator instead of 
simply gating its output, the handshake can restart the 
clock asynchronously with no runt pulses and return 
control to the synchronous logic.  Because they don’t 
decide whether to wait for an asynchronous signal or 
proceed with another local clock cycle, escapement 
organizations force a deterministic relative order of 
asynchronous transitions and clock edges, and thus 

deterministic state sequences in their synchronous logic.  
An escapement design of a DSP chip [12] completes all 
local processing of a previous input data word, stops the 
clock, and waits for the next asynchronous data word to 
appear at its inputs.  Determinism was neither a stated 
goal nor a recognized benefit of the DSP chip design.  
This GALS methodology is useful only for applications 
with low bandwidth communication between SBs. 

Synchronizers can be avoided during steady-state 
operation by propagating data through a self-timed FIFO 
between the two SBs as in STARI [13].  To prevent the 
FIFO from asynchronously becoming empty or full, it is 
initialized to roughly half full and data is added to it and 
removed from it every cycle.  The SB clocks must be 
derived from a common source in order to be frequency-
matched.  Since the skew between the two SB clocks is 
absorbed inside the FIFO, each end always appears to be 
synchronized to the local clock.  Another unintentionally 
deterministic methodology, it constrains the rates of 
output data production and input data consumption. 

3. Making GALS Deterministic 

In general, for a GALS system to be deterministic, 
each SB must know, in advance, during which local clock 
cycle each transition on each of its asynchronous inputs 
will occur.  The SB must not recognize a transition if it 
occurs earlier than expected, and it must stop the local 
clock if a transition occurs later than expected.  Of 
course, such complete knowledge is never available in 
practice; indeed, its existence would imply that the inputs 
carry no information and thus aren’t even needed!  
Fortunately, however, this knowledge can be inferred for 
all inputs if it is available for select inputs and if the 
timing relationship between those and all other inputs is 
known. 

First, the inputs of a SB can be divided into two sets:  
data signals which carry information in their logic levels 
and handshake signals which carry information in their 
transition times.  The data signals can then be bundled to 
the handshake signals, with timing verification used 
during design to ensure that the logic level of a data 
signal at the time of a transition of its associated 
handshake signal is deterministic. 

Second, all handshake signals with a common source 
SB and a common destination SB can be bundled to a 
single master handshake signal.  Again, careful design 
ensures that the values of all bundled handshake signals at 
the time of a transition of the master handshake signal are 
deterministic.  The master handshake can control the 
stoppable clock in an escapement organization. 

Optionally, the asynchronous data and handshakes 
bundled to the master handshake can be pipelined with a 
self-timed FIFO.  This allows multiple data words to be 

 



 

transferred between SBs with each master handshake.  
However, care must be taken to prevent a FIFO which has 
been emptied from asynchronously becoming non-empty 
or a FIFO which has been filled from asynchronously 
becoming non-full.  The most straightforward safeguard 
is to make access to the FIFO mutually exclusive for the 
two SBs connected to it, using the master handshake 
signal to decide which is enabled. 

4. Synchro-Tokens System Architecture 

“Synchro-tokens” is a novel deterministic GALS 
methodology which adds parameterized wrapper logic to 
the SBs as shown in A.  Data is transferred 
between SBs through asynchronous communication 
channels which may be pipelined with self-timed FIFOs.  
Each channel has its own request and acknowledge 
handshake signals which accompany arbitrarily wide 
bundled data words.  For each pair of SBs with at least 
one communication channel between them, a token ring 
with a node inside each SB’s wrapper acts as the master 
handshake signal.  Each node counts local clock cycles to 
determine when the token is expected to arrive and when 
it should depart.  A SB may have any number of nodes, 
and each node may be associated with any number of 
communication channels propagating data in either 
direction.  One SB in the system is designated as the Test 
SB and one or more SBs are designated as I/O.  These 
SBs are synchronized to and communicate with the 

environment (a board or a tester) without any intervening 
wrapper logic.  Standards 1149.1 and P1500 can be 
implemented with the Test SB and self-timed scan chains 
whose heads and tails are synchronized to the test clock.  
Custom debug and test hooks can take advantage of 
synchro-tokens FIFOs and token rings for controllability, 
observability, and clock manipulation. 

4.1. Wrapper Logic Design 

Figure 1
Figure 1

Test SB

I/O
SB

Self-Timed
FIFOs

Token
Ring

Wrapper

Internal
Scan Chain

Test
FIFO

1149.1
TAP

System
I/O

SB
SB

SB

Boundary
Scan Chain

 

To
ke

nI
n

To
ke

nO
ut

Clk

SBclken

Va
lid

Fu
ll

R
eq Ac

k
D

at
a

D
at

a

Node

Synchronous Block

Output
FIFO

Token
Ring

FclkenFclken

Synchronous Interface

Asynchronous Interface

Clk

Stoppable Clock

Node
SBclken

Token
Ring

R
eq Ac

k
D

at
a

Input
FIFO

Em
pt

y

D
at

a
FIFO

Interfaces

Clk

Fclken

 
 Figure 1:  A. Synchro-tokens system architecture. B. Wrapper logic. 

The wrapper logic, which consists of a node for each 
token ring, an interface for each FIFO, and one stoppable 
clock, is shown in B. 

The stoppable clock is a ring oscillator whose 
frequency can be digitally controlled with either variable 
delay inverters or a clock divider circuit on its output. 

The node is a synchronous state machine clocked by 
the SB’s stoppable clock.  The node connects to the token 
ring through the TokenIn and TokenOut signals.  The 
node produces a FIFO clock enable, Fclken, for the local 
interfaces of its associated FIFOs.  The node also 
generates a stoppable clock enable, SBclken; the enables 
from all nodes in the SB are ANDed together so that the 
clock stops when any node de-asserts its SBclken. 

Each node contains a pair of decrementing counters, 
called the hold counter and the recycle counter, which 
control the arrival and departure of the token.  Each 
counter is parallel loadable from a dedicated register, 
which in turn may be downloadable from ROM bits, 

 



 

fuses, or directly from the tester.  The hold counter 
determines how many local clock cycles the node holds 
the token before passing it to the other node on the token 
ring.  While the token is being held, both SBclken and 
Fclken are asserted.  The recycle counter determines how 
many local clock cycles after passing the token to the 
other node it expects to get the token back.  While the 
token is recycling, SBclken is asserted but Fclken is not.  
This allows multiple SBs to operate concurrently and 
other FIFO interfaces of the same SB to be enabled if 
their nodes are holding their tokens. 

The operation of the node state machine is illustrated 
in Figure 2.  When the incoming token has arrived (A) 
and the recycle counter reaches zero (B), the Fclken 
signal enables the interfaces of the node’s associated 
FIFOs (C).  The hold counter decrements by one for each 
local clock cycle (D).  When the hold counter reaches 
zero, it immediately presets to its original value (E), the 
token is passed (F), and the FIFOs are disabled (G).  The 
recycle counter then decrements by one for each local 
clock cycle (H).  If the token has not yet returned by the 
time the recycle counter reaches zero, SBclken is de-
asserted (I), synchronously stopping the local clock (J).  
When the token returns (K), the clock is asynchronously 
restarted (L).  A late token stops the clock not only to the 
associated node but to the entire SB, even if there are 
other nodes which are holding (M) or recycling. 

The FIFO interfaces process the handshakes needed to 
ensure that each transmitted data word is received exactly 
once.  While the associated node is holding that ring’s 
token, it is permitted but not required for data exchange 
between the SB and the FIFO to occur.  An input FIFO 
interface receives asynchronous requests and informs the 

SB when the FIFO is empty.  An output FIFO interface 
produces asynchronous requests when valid synchronous 
data is available and informs the SB when the FIFO is 
full.  Each stage of the FIFO must be able to complete a 
four-phase handshake within one local clock cycle of the 
transmitter or sender SB.  Additionally, because the FIFO 
handshakes are bundled to the token, data must propagate 
through the FIFO fast enough that data added to its tail 
just before the departing token disables the tail interface 
reaches the FIFO’s head before the token enables the 
head interface. 

4.2. Debug and Test Features 

The core of the Test SB is a Test Access Port (TAP) 
and associated controller which is 1149.1 compliant.  The 
clock of the Test SB is provided by the tester through the 
TCK pin.  The test clock has two modes of operation, 
similar to [14].  In Interlocked Mode, tokens passing 
through the Test SB may stop the clock; data exchange 
between the tester and the mission mode logic is 
deterministic.  Interlocked Mode is best suited for on-
tester debug and production test.  In Independent Mode, 
the operation of TCK and the flow of tokens through the 
Test SB have no effect on each other, but communication 
with mission mode logic is nondeterministic.  
Independent Mode is appropriate for off-tester usage of 
TAP public instructions and for mission mode (where 
TCK never toggles). 

Self-timed shift registers can be used for the boundary 
scan chain, P1500 registers in the core wrappers, internal 
scan chains for ATPG or BIST, or controls for other 
custom features.  Adding several empty stages to the tail 
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Figure 2.  Waveforms illustrating operation of the node state machine. 

 



 

of the chain allows both ends of the chain to be 
synchronized to TCK.  Making the hold, recycle, and 
clock frequency registers in each system SB accessible 
through a scan chain facilitates system performance 
tuning and clock frequency shmooing to find critical 
paths within SBs. 

Component Area (2-input gates) 
FIFO interface 12 + 4.5*(number of data bits) 
FIFO stage 4 + 4.5*(number of data bits) 
Node 145 

 
Table 1.  Synchro-tokens component area models. 

System clocks can be stopped while TCK is in 
Interlocked Mode by holding tokens indefinitely in the 
Test SB and waiting for all of the recycle counters in the 
system to reach zero and deterministically stop the local 
clocks.  The granularity of these natural breakpoints can 
be increased - all the way to single stepping if desired - 
by adding token rings between more of the system SBs 
and the Test SB, and by changing the values of the hold 
and recycle registers.  After the system clocks have been 
stopped, the asynchronous scan chains can be used to 
deterministically read and write system state. 

 
The impact of synchro-tokens on throughput and 

latency is due to each FIFO being accessible by only one 
SB at a time.  For a worst-case analysis, synchro-tokens 
can be compared with STARI.  In the synchro-tokens 
system, let the hold register value of both nodes be H, and 
let the recycle register value of both nodes be R (the 
smallest value which prevents the local clock from 
stopping due to a late token).  In both systems, let the 
period of both clocks be T and the propagation delay of 
one FIFO stage be F.  Also in both systems, let the FIFO 
depth be H, so that the FIFO depth equals the hold 
register value of the synchro-tokens system and the FIFO 
depths of both systems are equal. 

5. Results 

The throughput of the STARI FIFO is 1 data word per 
cycle, while that of the synchro-tokens FIFO is at most 
H/(H+R).  The synchro-tokens system can match the 
throughput of STARI by increasing the channel width by 
a factor of at least (H+R)/H and providing hardware 
within the SB to synchronously queue data produced 
while the FIFO interface is disabled.  Obviously, this is 
an area/performance tradeoff. 

The deterministic behavior of synchro-tokens was 
demonstrated using Verilog, whose ability to specify 
nonzero delays and concurrent events made it a 
convenient validation platform.  The test case was a 
system composed of three SBs and six FIFOs.  Nominal 
values for FIFO delays, token ring delays, and local clock 
frequencies were chosen such that the token returned 
exactly when expected – never early and never late.  
Scenarios in which one or more of the delays could 
change to 50%, 75%, 150%, or 200% of their nominal 
values were simulated.  The data sequences on each SB’s 
I/Os were monitored for the first 100 local clock cycles 
and compared with the data sequences associated with the 
nominal delay settings.  In all simulations – over 16,000 
of them – all data sequences were found to match exactly.  
However, when the synchro-tokens control logic was 
bypassed by forcing the FIFO interfaces and local clocks 
always to be enabled, the data sequences were observed 
to be nondeterministic. 

The latency LSTARI of the STARI FIFO, which is kept 
roughly half full, is the FIFO delay for the empty half of 
its stages plus one data word per clock for the full half of 
its stages: 

LSTARI = F*H/2 + T*H/2 (1) 

In this analysis, the synchro-tokens FIFO is repeatedly 
filled by the transmitter and emptied by the receiver.  Its 
latency LSYNCHRO is the sum of the time from when data is 
ready at the transmitter FIFO interface until the token is 
passed, plus the token delay (which is approximately 
equal to the FIFO delay), plus the time until data is 
available at the receiver FIFO interface: 

The area overhead of synchro-tokens has been 
approximated using a gate-level model of the wrapper 
logic and layouts from a 0.25-micron cell library [15].  
Summing the areas of the library cells used in the wrapper 
logic and using the average area of the library’s 2-input 
gates as the unit of measurement, the models shown in 
Table 1 have been developed.  A comparison with 
another GALS implementation should not include the 
FIFO components, since the FIFO interface is always 
needed to ensure error-free transmission of asynchronous 
data, and the FIFO stages are always optional.  Since 
there is just one pair of nodes for each pair of 
communicating SBs, the system-wide area overhead is 
reasonably low. 

LSYNCHRO = T*(R+H+1)/2 + F*H + T*(H+1)/2 (2) 

Clearly, the latency of the synchro-tokens FIFO can be 
minimized by decreasing the period of the clocks and the 
hold register value (recall that the recycle register is 
already a minimum value).  This causes the token to be 
passed more frequently, but decreases the throughput. 

Even though synchro-tokens has a performance 
penalty compared with STARI, its power comes from its 
ability to be optimized for different dataflow profiles and 
its deterministic behavior which is maintained even if the 
actual data fails to follow that profile. 

 

 



 

 

A synchro-tokens system may deadlock if there is a 
cyclic dependency among a set of SBs in which each SB 
has stopped its clock to wait for a late token [17].  
Whether or not deadlock occurs is deterministic; thus, no 
detection or recovery methodology is needed.  A set of 
deadlock-preventing design rules which govern the 
choice of hold and recycle register values for a given 
system topology has been formally derived.  The details 
are beyond the scope of this paper. 

6. Conclusion and Future Work 

Synchro-tokens, a novel GALS design methodology, 
has been presented.  Its deterministic behavior facilitates 
debug and test, while its parameterization makes it useful 
for a wide variety of dataflow profiles.  Compatibility 
with IEEE Standards 1149.1 and P1500 and other 
common test and debug methodologies has been shown.  
The deterministic behavior and the test and debug 
features have been validated in Verilog.  Its area overhead 
has been shown to be modest.  Its performance impact has 
been analyzed in terms of its parameters. 

Future research includes SPICE simulations of the 
synchro-tokens control logic and the implementation of a 
larger system for further performance studies.  Formal 
methods need to be applied to prove that synchro-tokens 
enforces deterministic behavior.  Performance-improving 
methodology enhancements also need investigation. 
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