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The Pinhole Camera
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Figure 1: A camera.

Figure 1 shows a camera with center of projection O and the principal axis parallel to Z axis. Image plane is at
focus and hence focal length f away from O. A 3D point P = (X,Y, Z) is imaged on the camera’s image plane
at coordinate Pc = (u, v). We will first find the camera calibration matrix C which maps 3D P to 2D Pc. As we
have seen before, we can find Pc using similar triangles as
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which gives us

u =
fX

Z

v =
fY

Z

Using homogeneous coordinates for Pc, we can write this as u
v
w

 =

 f 0 0
0 f 0
0 0 1

 X
Y
Z

 (1)

You can verify that this indeed generates the point Pc = (u, v, w) = (fXZ , fYZ , 1). Note that P is still not in
homogeneous coordinates.

Next, if the origin of the 2D image coordinate system does not coincide with where the Z axis intersects the
image plane, we need to translate Pc to the desired origin. Let this translation be defined by (tu, tv). Hence, now
(u, v) is

u =
fX

Z
+ tu

v =
fY

Z
+ tv
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This can be expressed in a similar form as Equation 1 as u
v
w

 =

 f 0 tu
0 f tv
0 0 1

 X
Y
Z

 (2)

Now, in Equation 2, Pc is expressed in inches. Since this is a camera image, we need to express it in inches.
For this we will need to know the resolution of the camera in pixels/inch. If the pixels are square the resolution
will be identical in both u and v directions of the camera image coordinates. However, for a more general case,
we assume rectangle pixels with resolution mu and mv pixels/inch in u and v direction respectively. Therefore, to
measure Pc in pixels, its u and v coordinates should be multiplied by mu and mv respectively. Thus

u = mu
fX

Z
+mutu

v = mv
fY

Z
+mvtv

This can be expressed in matrix form as u
v
w

 =

 muf 0 mutu
0 mvf mvtv
0 0 1

 X
Y
Z

 =

 αx 0 uo
0 αy vo
0 0 1

P = KP (3)

Note that K only depends on the intrinsic camera parameters like its focal length, principal axis and thus defines
the intrinsic parameters of the camera. Sometimes K also has a skew parameter s, given by

K =

 αx s uo
0 αy vo
0 0 1


This usually comes in if the image coordinate axes u and v are not orthogonal to each other. Note that K is an
upper triangular 3× 3 matrix. This is usually called the intrinsic parameter matrix for the camera.

Now if the camera does not have its center of projection at (0, 0, 0) and is oriented in an arbitrary fashion
(not necessarily z perpendicular to the image plane), then we need a rotation and translation to make the camera
coordinate system coincide with the configuration in Figure 1. Let the camera translation to origin of the XYZ
coordinate be given by T (Tx, Ty, Tz). Let the the rotation applied to coincide the principal axis with Z axis be
given by a 3 × 3 rotation matrix R. Then the matrix formed by first applying the translation followed by the
rotation is given by the 3× 4 matrix

E = (R | RT )

called the extrinsic parameter matrix. So, the complete camera transformation can now represented as

K(R | RT ) = (KR |KRT ) = KR(I | T )

Hence Pc, the projection of P is given by

Pc = KR(I | T )P = CP

C is a 3× 4 matrix usually called the complete camera calibration matrix. Note that since C is 3× 4 we need P
to be in 4D homogeneous coordinates and Pc derived by CP will be in 3D homogeneous coordinates. The exact
2D location of the projection on the camera image plane will be obtained by dividing the first two coordinates of
Pc by the third.
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Camera Calibration

In this section, we will see how to findC and then how to break it up to get the intrinsic and extrinsic parameters.
Though C has 12 entries, the entry in the 3rd row and 4th column is 1. Hence, in effect C has 11 unknown
parameters.

Given C, we know that
C = ( KR |KRT ) = (M |MT ),

where KR = M . Note that, given C, we can find M as the left 3 × 3 sub matrix of C. Next, we use RQ
decomposition to break M into two 3 × 3 matrices M = AB, where A is upper triangular and B is orthogonal
matrix (i.e. BTB = I). This upper triangular A corresponds to K and B corresponds to the rotation R. Let c4
denote the last column of C. From previous equation,

MT = c4 (4)

T = M−1c4 (5)

(6)

Thus, given C, we can find the intrinsic and extrinsic parameters through this process. But, now the next question
is, how to find C for any general camera? For this, we need to find correspondances between 3D points and their
projections on the camera image. If we know a 3D point P1 corresponding to Pc1 on the camera image coordinate,
then

Pc1 = CP1

Or,  u1

v1
w1

 = C


X1

Y1

Z1

1


However, note that 2D camera image coordinates we are detecting are ( u1

w1
, v1w1

) = (u′1, v
′
1).

Note that finding C means we have find all the 12 entries of C. Thus, we are trying to solve for 12 unknowns.
Let the rows of C be given by ri, i = 1, 2, 3. Thus

C =

 r1
r2
r3


Since we know the correspondence P1 and Pc1 , we know

u′1 =
u1

w1
=
r1.P1

r3.P1

v′1 =
v1
w1

=
r2.P1

r3.P1

which gives us two linear equations
u′1(r3.P1)− r1.P1 = 0

v′1(r3.P1)− r2.P1 = 0

Note that in these two equations, only the elements of r1,r2 and r3 are the unknowns. So, we find that each 3D to
2D correspondence generates two linear equations. To solve for 12 unknowns, we will need at least 6 such cor-
respondences. Usually for better accuracy, much more than 6 correspondences are used and the over-determined
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system of linear equations thus formed is solved using singular value decomposition methods to generate the 12
entries of C. The correspondences are determined using fiducial based image processing methods.

3D Depth Estimation

Now we will see how given the Pc and C, we can find P i.e. using images of 3D world on calibrated cameras,
how can we estimate the exact location of P . Let us assume that we have a 3D point P1 whose image on a
camera defined by the matrix C1 is given by Pc1 . Let the point P be represented in homogeneous coordinates as
(X,Y, Z,W ).

So, we know

Pc1 =

 u1

v1
w1

 = C1


X
Y
Z
W

 (7)

Again note that the 2D points we are detecting in the camera image have coordinates ( u1
w1
, v1w1

) = (u′1, v
′
1). Hence,

the rows of the calibration matrix C1 are given by rC1
i , i = 1, 2, 3. So, from Equation 7, we get two linear

equations as
u′1(r

C1
3 .P )− rC1

1 .P = 0

v′1(r
C1
3 .P )− rC1

2 .P = 0

So, from each camera we can generate two linear equations. We have 4 unknowns to be solved given by
X,Y, Z,W . Thus, we need at least two camera (with different calibration matrices) and we need to find the
point Pc2 on this camera’s image that corresponds to the same 3D point P . Finding the image of the same 3D
points on two different cameras images is a hard problem. This is the reason that humans need two eyes to resolve
depth. Also, note that this mathematics only takes into account the binocular cues like disparity. The reason we
humans can still resolve depth to a certain extent with one eye, is because we use several oculomotor and monoc-
ular cues. These are not present for a camera and hence depth estimation is not possible with a single camera. Of
course, for greater accuracy often more than two cameras are used (called stereo rigs) and singular value decom-
position is used to solve the over-determined linear equations that result.

Homography

If two cameras see points lying on a plane, a relationship between them can be easily found without going
through explicit camera calibration. This relationship that relates the two cameras is called the homography.

Figure 2 illustrates the situation. Let us assume a point Pπ that lies on the plane π. Let the normal to the plane
be defined by N = (a, b, c). Thus the plane equation is given by

( N 1 ).P = 0 (8)

where P is any point in the 3D world.
Let the two cameras be defined by calibration matrices by C1 and C2. Let the image of Pπ on camera C1 and

C2 be P 1
π and P 2

π respectively. From this, we know that

P 1
π =

 u1

v1
w1

 = C1.Pπ
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Figure 2: Homography between two cameras seeing a scene.

This means that in 3D, the point Pπ lies on the ray (u1, v1, w1, 0)T . However, the scale factor is unknown. Let
this unknown scale factor be denoted by τ . Then we get

Pπ =


u1

v1
w1

τ

 =
(
P 1
π

τ

)

Next, since Pπ satisfies the plane equation, we get from Equation 8,

τ = −N.P 1
π

Hence,

Pπ =


u1

v1
w1

τ

 =
(

I
−N

)
P 1
π

Note, I is a 3× 3 matrix and N is a 1× 3 matrix. Hence, this is a 4× 3 matrix.
Now, let C2 = ( A2 a2 ), where A2 is the 3× 3 matrix and a2 is a 3× 1 vector. Then,

P 2
π = C2.Pπ (9)

= ( A2 a2 )
(

I
−N

)
P 1
π (10)

(11)

Note that the first matrix is a 3× 4 matrix and the second one is a 4× 3 matrix. Hence, multiplication of these two
will give a 3× 3 matrix. This is what we call the homography H . Hence,

P 2
π = (A2 − a2N)P 1

π = HP 1
π

.
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Note that a2 is a 3 × 1 matrix and N is a 1 × 3 matrix. Thus, a2N would generate a 3 × 3 matrix that can be
subtracted from 3 × 3 matrix A2 to generate H . Thus, H is a 3 × 3 matrix that relates one camera image with
another and defines the homography. Using this matrix, the image from one camera can be warped to the view of
another camera.

Note that both camera calibration matrix C and homography H can be correct upto a scale factor. Hence, we
can assume the bottom right element to be 1. This reduces the number of unknowns when finding C from 12 to 11.
Similarly, when computingH the number of unknowns are 8. So, in order to reconstructH , we have to see a plane
with two cameras. We have to find the image of same point on the plane as seen by two cameras. So, basically
we need to know the corresponding points P 1

π and P 2
π in the two cameras. From each correspondence, using

Equation 14, we can generate two linear equations. To find the 8 unknowns in H , we need just 4 correspondences.
So, now instead of going through a full camera calibration (finding 11 parameters for two cameras leading to 22
parameters), with these 8 homography parameters we can relate one camera with another.


