
Discussion Section Week 1

• Intro

• Course Project Information

• Constraint Satisfaction Problems
– Sudoku
– Backtracking Search Example
– Heuristics for guiding Search Example

Intro

• Teaching Assistant
– Junkyu Lee (June Queue Lee)
– Office Hour

• Friday 11:00 AM ~ 12:00 PM
• DBH 4099

• Reader

– Minhaeng Lee (Min Heng Lee)
– Office Hour

• Thursday 2:00 PM ~ 3:00 PM
• DBH 4219

Course Project Information
• Fri., 15 Jan., 11:59pm: Project Team Formation

• Sun., 24 Jan., 11:59pm: Project Problem Generator

• Sun., 31 Jan., 11:59pm: Project Backtracking Search

• Sun., 14 Feb., 11:59pm: Project Forward Checking

• Sun., 21 Feb., 11:59pm: Project Arc Consistency

• Sun., 28 Feb., 11:59pm: Project MRV & DH Heuristic

• Sun., 6 Mar.., 11:59pm: Project LCV Heuristic

• Sun., 13 Mar., 11:59pm: Final Project

You will lose 10% of your Project grade for every day or fraction thereof it is late

Course Project Information

• Fri., 15 Jan., 11:59pm: Project Team Formation

– How Many Members ?

– We will post a google doc next week on EEE message board

You Will Be Expected to Know

• Basic definitions (section 6.1)
– What is a CSP?

• Backtracking search for CSPs (6.3)

• Variable ordering or selection (6.3.1)

– Minimum Remaining Values (MRV) heuristic
– Degree Heuristic (DH) (to unassigned variables)

• Value ordering or selection (6.3.1)

– Least constraining value (LCV) heuristic

What is CSP?

• Task

• Model

What is CSP?

• Task/goal for solving CSP
– Given a set of constraints,

• Find a solution that satisfy all constraints
• Find all solutions that satisfy all constraints
• Count number of solutions
• …

What is CSP?

• How to model/express CSP problems?
– variable and its domain

– constraints, relations, functions
• allowed (partial) combinations of variable values

Constraint Satisfaction Problems
• What is a CSP?

– Finite set of variables X1, X2, …, Xn

– Nonempty domain of possible values for each variable
D1, D2, …, Dn

– Finite set of constraints C1, C2, …, Cm
• Each constraint Ci limits the values that variables can take,
• e.g., X1 ≠ X2

– Each constraint Ci is a pair <scope, relation>
• Scope = Tuple of variables that participate in the constraint.
• Relation = List of allowed combinations of variable values.
 May be an explicit list of allowed combinations.
 May be an abstract relation allowing membership testing and listing.

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain specific expertise).

Sudoku

Example: Sudoku
(constraint propagation)

Winter 2016 11

Each row, column and major block must be
alldifferent

“Well posed” if it has unique solution: 27 constraints

2 3
4 6 2

Constraint
propagation

•Variables: 81 slots

•Domains =
{1,2,3,4,5,6,7,8,9}

•Constraints:
•27 not-equal

CS 275 Winter 2016, Constraint Networks, Rina Dechter

Sudoku
(inference)

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution

Winter 2016 12
CS 275 Winter 2016, Constraint Networks, Rina Dechter

Backtracking search
• Similar to Depth-first search

– At each level, picks a single variable to explore
– Iterates over the domain values of that variable

• Generates kids one at a time, one per value

• Backtracks when a variable has no legal values left

• Uninformed algorithm

– No good general performance

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

14

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search

15

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search

16

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search

17

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search

18

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search

19

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search

20

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search

21

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search

22

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search

23

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search

24

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search

25

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search (Figure 6.5)
function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Depth First Search

Improving CSP efficiency
• Previous improvements on uninformed search

 → introduce heuristics

• For CSPS, general-purpose methods can give large
gains in speed, e.g.,
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?
– Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation,

and so the heuristics are more general compared to
methods in Chapter 4

Heuristic

• Selecting Variable
– Minimum remaining values (MRV)

• choose variable with the fewest legal moves
– Degree heuristic for next variable

• select variable that is involved in the largest number of
constraints on other unassigned variables

• useful as a tie breaker after MRV.

• Selecting Value
– Least constraining value (LCV)

• given a variable choose the least constraining value

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

CSP example: Map coloring problem

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di = {red,green,blue}
• Constraints: adjacent regions must have different colors.

• E.g. WA ≠ NT

CSP example: Map coloring solution

• A solution is:
– A complete and consistent assignment.
– All variables assigned, all constraints satisfied.

• E.g., {WA=red, NT=green, Q=red, NSW=green,
 V=red, SA=blue, T=green}

Minimum remaining values (MRV)
for next variable

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

• A.k.a. most constrained variable heuristic

• Heuristic Rule: choose variable with the fewest legal moves

– e.g., will immediately detect failure if X has no legal values

Degree heuristic for next variable

• Heuristic Rule: select variable that is involved in the largest number of constraints on
other unassigned variables.

• Degree heuristic can be useful as a tie breaker after MRV.

• In what order should a variable’s values be tried?

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

Least constraining value (LCV) for
next value

• Least constraining value heuristic

• Heuristic Rule: given a variable choose the least constraining value
– leaves the maximum flexibility for subsequent variable assignments

Minimum remaining values (MRV)
vs. Least constraining value (LCV)

• Why do we want the MRV (minimum values, most constraining)
for variable selection --- but the LCV (maximum values, least
constraining) for value selection?

• Isn’t there a contradiction here?

• MRV for variable selection to reduces the branching factor.
– Smaller branching factors lead to faster search.
– Hopefully, when we get to variables with currently many values, constraint

propagation (next lecture) will have removed some of their values and
they’ll have small branching factors by then too.

• LCV for value selection increases the chance of early success.
– If we are going to fail at this node, then we have to examine every value

anyway, and their order makes no difference at all.
– If we are going to succeed, then the earlier we succeed the sooner we can

stop searching, so we want to succeed early.
– LCV rules out the fewest possible solutions below this node, so we have

the most chances for early success.

	Discussion Section Week 1
	Intro
	Course Project Information
	Course Project Information
	You Will Be Expected to Know
	What is CSP?
	What is CSP?
	What is CSP?
	Constraint Satisfaction Problems
	Sudoku
	Example: Sudoku�(constraint propagation)
	슬라이드 번호 12
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search (Figure 6.5)
	Depth First Search
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34
	슬라이드 번호 35
	Improving CSP efficiency
	Heuristic
	Backtracking search (Figure 6.5)
	CSP example: Map coloring problem
	CSP example: Map coloring solution
	Minimum remaining values (MRV) for next variable
	Degree heuristic for next variable
	Backtracking search (Figure 6.5)
	Least constraining value (LCV) for next value
	Minimum remaining values (MRV)�vs. Least constraining value (LCV)

