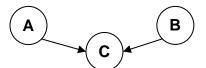
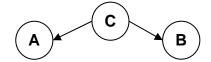
CS-171, Intro to A.I. — Quiz#4 — Spring Quarter, 2011 — 20 minutes				
YOU	IR NAME AND EMAIL AD	DRI	ESS:	
YOUR ID: ID TO RIGH			HT: ROW	NO. FROM RIGHT:
For e		on	the left, write in the l	etter corresponding to the best ne is done for you as an example.
Α.	Probability Theory	Α	Assigns each sentence a	a degree of belief ranging from 0 to 1
	Conditional independence	В		ed without any other information
	Independence	С	Ţ Ţ	ed after some evidence is obtained
	Product rule (chain rule)	D		combinations of values of all variables
	Conditional probability	Ε		omain with specified probabilities
	Unconditional probability	F	A possible world is repr	esented by variable/value pairs
	P(a∨b)	G	$P(a \land b) = P(a) P(b)$	
	Random variable	Н	$P(a \land b \mid c) = P(a \mid c) P(b \mid c)$	
	Bayes' rule	ı	P(a b) = P(b a) P(a) /	P(b)
	Joint probability distribution	J	$P(a) + P(b) - P(a \land b)$	
	Factored representation	K	$P(a \land b \land c) = P(a \mid b \land c) P(a \mid b \land c)$	P(b c) P(c)
 2. (30 pts total, 5 pts each) Unifiers and Unification. Write the most general unifier (or MGU) of the two terms given, or "None" if no unification is possible. Write your answer in the form of a substitution as given in your book, e.g., {x / John, y / Mary, z / Bill}. The first one is done for you as an example. 2a. UNIFY(Knows(John, x), Knows(John, Jane)) (x / Jane) 				
2b . UNIFY(Knows(John, x), Knows(y, Jane))				
2c. UNIFY(Knows(y, x), Knows(John, Jane))				
2d. UNIFY(Knows(John, x), Knows(y, Father (y)))				
2e. UNIFY(<i>Knows</i> (<i>John, F</i> (<i>x</i>)), <i>Knows</i> (<i>y, F</i> (<i>F</i> (<i>z</i>)))				
2f. UNIFY(<i>Knows</i> (<i>John</i> , <i>F</i> (<i>x</i>)), <i>Knows</i> (<i>y</i> , <i>G</i> (<i>z</i>)))				
2g. UNIFY(<i>Knows</i> (<i>John</i> , <i>F</i> (<i>x</i>)), <i>Knows</i> (<i>y</i> , <i>F</i> (<i>G</i> (<i>y</i>))))				

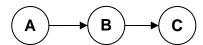
**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE ****

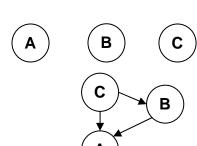

3. (40 pts total, 10 pts each) Bayesian networks.

Recall that a Bayesian network represents a joint probability distribution in graphical form, using the approximation


$$p(X_1, X_2, ..., X_N) = \prod p(X_i | parents(X_i))$$

For each Bayesian network shown below, write down in factored form the joint probability distribution that it represents. The first one is done for you as an example.


3a. P(C | A, B) P(A) P(B)


3b.

3c. _____

3b. _____

3b. _____

4. (10 pts total) Bayesian networks.

Draw the Bayesian network that represents P(J | A) P(M | A) P(A | B, E) P(B) P(E).