
1

CS-171, Intro to A.I. — Final Exam — Winter Quarter, 2015

YOUR NAME:

YOUR ID: ID TO RIGHT: ROW: SEAT:

The exam will begin on the next page. Please, do not turn the page until told.

When you are told to begin the exam, please check first to make sure that you have all 13
pages, as numbered 1-13 in the bottom-right corner of each page. We wish to avoid copy
problems. We will supply a new exam for any copy problems.

The exam is closed-notes, closed-book. No calculators, cell phones, electronics.

Please turn off all cell phones now.

Please clear your desk entirely, except for pen, pencil, eraser, a blank piece of paper (for
scratch pad use), and an optional water bottle. Please write your name and ID# on the blank
piece of paper and turn it in with your exam.

This page summarizes the points for each question, so you can plan your time.

1. (10 pts total, 1 pt each) MACHINE LEARNING.

2. (10 pts total) ONE FISH, TWO FISH, RED FISH, BLUE FISH. Resolution Theorem Proving.
(With apologies to Dr. Seuss.)

3. (10 pts total) ONE FISH, TWO FISH, RED FISH, BLUE FISH. Naïve Bayes Classifier Learning.
(With apologies to Dr. Suess.)

4. (10 pts total, 2 pts each) WUMPUS WORLD MODELS.

5. (10 pts total) ONE FISH, TWO FISH, RED FISH, BLUE FISH. Decision Tree Classifiers.
(With apologies to Dr. Suess.)

6. (10 points total, 2 pts each) CONSTRAINT SATISFACTION PROBLEMS.

7. (10 pts total) BAYESIAN NETWORKS.

8. (10 pts total, 2 pts each) STATE-SPACE SEARCH.

9. (10 pts total, -1 pt for each error, but not negative) GAME (ADVERSARIAL) SEARCH.

10. (10 pts total, 1 pt each) FOPC KNOWLEDGE ENGINEERING IN THE TOY BLOCKS WORLD.

The Exam is printed on both sides to save trees! Work both sides of each page!

2

3

1. (10 pts total, 1 pt each) Machine Learning.

1.a. (4 pts total, 1 pt per blank)
While studying for the Final Exam,
you tried to print out Fig. 18.9 from
the text book. That figure explains
how error rates change with tree
size (or model complexity).
However, for some unknown
reason, the figure legend and axis
labels did not print out correctly.

Fill in the blanks below with A, B, C, or D to indicate where each label below belongs on the graph
above.

____B_____ (Write A, B, C, or D.) Tree size (or Model complexity)

____D_____ (Write A, B, C, or D.) Training set error

____C_____ (Write A, B, C, or D.) Validation set error

____A_____ (Write A, B, C, or D.) Error rate

1.b. (3 pts total, 1 pt each) While working on a traffic sign recognition problem, you implemented
four different classifiers. You are now trying to compare their performance. Their misclassification
rates are as follows:

 Classifier A Classifier B Classifier C Classifier D
Error rate on training data 25% 5% 10% 20%
Error rate on testing data 30% 20% 15% 25%

1.b.i. (1pt) ____C_____ (Write A, B, C, or D.) Which classifier has the best generalization
 performance, i.e., most likely would perform the best
 when applied to unseen data?

1.b.ii. (1pt) ____A_____ (Write A, B, C, or D.) Which classifier is underfitting the most?

1.b.iii. (1pt) ___ B_____ (Write A, B, C, or D.) Which classifier is overfitting the most?

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

See Fig. 18.9

Typically, training set error (D)
decreases with increasing tree size
(B), whereas minimum validation
set error (C) requires model
complexity to be in a “sweet spot”.
Both C and D are error rates (A).

Best generalization performance = smallest
error on the testing data (validation set).

Underfitting: Classifier is not complex enough to
achieve low error rates on both training and testing
set. A has the largest overall error, thus A is
underfitting the most.

Overfitting: Classifier performs far better on training
set than on testing set (limited ability to generalize to
unseen data). B has the largest gap between training
and testing error, thus B is overfitting the most.

4

1.c. (3 pts total; 1pt each). In the figures below, each data point has Class either positive (+) or
negative (–). For each of the two-dimensional data sets below, put an “X” in the box of any classifier
that can perfectly separate the positive from the negative data points. For example, if a Linear
Perceptron can separate the classes perfectly, put an “X” in its box:  Linear Perceptron. In most or
all cases, more than one classifier can separate the data set.

1.c.i.
(1 pt)

 Linear Perceptron

 Nearest Neighbor

 Decision Tree

 Support Vector Machine

1.c.ii.
(1 pt)

 Linear Perceptron

 Nearest Neighbor

 Decision Tree

 Support Vector Machine

1.c.iii.
(1 pt)

 Linear Perceptron

 Nearest Neighbor

 Decision Tree

 Support Vector Machine

Linear perceptron fails
because data is not
linearly separable.

Both DT and SVM
support non-linear
decision boundaries.

For SVMs, this is just
textbook Fig. 18.31.

DTs are DNF-complete,
so can separate any
consistent training set
(but may need a tree of
exponential size!!).

Again a circle
would do the trick.
But careful! A
simple straight line
will work, too.

Possible perceptron
or SVM decision
boundary

Nearest neighbor fails (at
least) here

Possible SVM boundaries

Nearest neighbor fails
(at least) here

Possible DT boundaries

Possible DT/SVM decision boundary
(DT: picture a pixelated circle).

For question 1.c.iii.
you received full
credit if you
answered DT or
SVM or both.

5

2. (10 pts total) ONE FISH, TWO FISH, RED FISH, BLUE FISH. Resolution Theorem Proving.
(With apologies to Dr. Seuss.)
 Amy, Betty, Cindy, and Diane went out to lunch at a seafood restaurant. Each ordered one fish. Each
fish was either a red fish or a blue fish. Among them they had exactly two red fish and two blue fish.
 You translate this fact into Propositional Logic (in prefix form) as:
 /* Ontology: Symbol A/B/C/D means that Amy/Betty/Cindy/Diane had a red fish. */
 (OR (AND A B (¬ C) (¬ D)) (AND A (¬ B) C (¬ D))
 (AND A (¬ B) (¬ C) D) (AND (¬ A) B C (¬ D))
 (AND (¬ A) B (¬ C) D) (AND (¬ A) (¬ B) C D))

 Their waiter reported:
“Amy and Diane had the same color fish; I don’t remember which color they were.
Amy, Betty, and Cindy had exactly one red fish among them; I don’t remember who had what.”
 You translate these facts into Propositional Logic (in prefix form) as:
 (<=> A D)
 (OR (AND A (¬ B) (¬ C)) (AND (¬ A) B (¬ C)) (AND (¬ A) (¬ B) C))

 Betty’s daughter asked, “Is it true that my mother had a blue fish?”
You translate this query into Propositional Logic as “(¬ B)” and form the negated goal as “(B)”.
 Your resulting knowledge base (KB) plus the negated goal (in CNF clausal form) is:
 (A B C) ((¬ A) (¬ B) (¬ C))
 (A B D) ((¬ A) (¬ B) (¬ D))
 (A C D) ((¬ A) (¬ C) (¬ D))
 (B C D) ((¬ B) (¬ C) (¬ D))
 ((¬ A) D) (A (¬ D))
 (A B C) ((¬ A) (¬ B))
 ((¬ A) (¬ C)) ((¬ B) (¬ C))
 (B)

 Write a resolution proof that Betty had a blue fish.
For each step of the proof, fill in the first two blanks with CNF sentences from KB that will resolve to produce
the CNF result that you write in the third (resolvent) blank. The resolvent is the result of resolving the first two
sentences. Add the resolvent to KB, and repeat. Use as many steps as necessary, ending with the empty
clause. The empty clause indicates a contradiction, and therefore that KB entails the original goal sentence.
 The shortest proof that I know of is only five lines long. (A Bonus Point is offered for a shorter proof.)
Longer proofs are OK provided they are correct. Think about it, then find a proof that mirrors how you think.
Obviously, Amy and Diane must have had red fish, while Betty and Cindy had blue fish.

Resolve (A C D) with (A (¬ D)) to produce: (A C)

Resolve (B) with ((¬ B) (¬ C)) to produce: ((¬ C))

Resolve (A C) with ((¬ C)) to produce: (A)

Resolve (B) with ((¬ A) (¬ B)) to produce: ((¬ A))

Resolve (A) with ((¬ A)) to produce: ()

Resolve with to produce:

Resolve with to produce:

Resolve with to produce:

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

]

See R&N Section 7.5.2.

Among them they had
exactly two red fish
and two blue fish.

(<=> A D)
Amy, Betty, and Cindy had
exactly one red fish among them.]

Negated goal.

6

Other proofs are OK provided that they are correct. For example, another correct proof is:

Resolve B with ((¬ A) (¬ B)) to produce: (¬ A)

Resolve B with ((¬ B) (¬ C)) to produce: (¬ C)

Resolve (¬ A) with (A (¬ D)) to produce: (¬ D)

Resolve (¬ A) with (A C D) to produce: (C D)

Resolve (¬ C) with (C D) to produce: (D)

Resolve (¬ D) with (D) to produce: ()

Resolve with to produce:

7

3. (10 pts total) ONE FISH, TWO FISH, RED FISH, BLUE FISH. Naïve Bayes Classifier Learning.
(With apologies to Dr. Suess.) You are a robot in the aquarium section of a pet store, and must
learn to discriminate Red fish from Blue fish. Unfortunately, your vision sensors are in Black & White,
but Red fish have the same gray-scale tone as Blue fish. So, you must learn to discriminate them by
body parts. You choose to learn a Naïve Bayes classifier. You are given the following examples :

Recall that Bayes’ rule allows you to rewrite the conditional probability of the class given the attributes
as the conditional probability of the attributes given the class. As usual, α is a normalizing constant
that makes the likelihoods (unnormalized probabilities) sum to one. Thus, we may ignore the
repeated denominator P(Fins, Tail, Body), because it is constant for all classes. Using Bayes’ Rule,
we rewrite: P(Class | Fins, Tail, Body) = α P(Fins, Tail, Body | Class) P(Class)
3.a. (2 pts) Now assume that the attributes (Fins, Tail, and Body) are conditionally independent given
the Class. Rewrite the expression above, using this assumption of conditional independence (i.e.,
rewrite it as a Naïve Bayes Classifier expression).
 α P(Fins, Tail, Body | Class) P(Class) = α
 P(Fins | Class) P(Tail | Class) P(Body | Class) P(Class)

3.b. (4 pts total; −1 for each wrong answer, but not negative) Fill in numerical values for the
following expressions. Leave your answers as simplified common fractions (e.g., 1/4, 3/5).

P(Class=Red)= 1/2 P(Class=Blue)= 1/2

P(Fins=Thin | Class=Red)= 1/4 P(Fins=Thin | Class=Blue)= 3/4

P(Fins=Wide | Class=Red)= 3/4 P(Fins=Wide | Class=Blue)= 1/4

P(Tail=Large | Class=Red)= 3/4 P(Tail=Large | Class=Blue)= 1/4

P(Tail=Small | Class=Red)= 1/4 P(Tail=Small | Class=Blue)= 3/4

P(Body=Slim | Class=Red)= 1/2 P(Body=Slim | Class=Blue)= 1/2

P(Body=Fat | Class=Red)= 1/2 P(Body=Fat | Class=Blue)= 1/2
3.c. (4 pts total, 2 pts each) Consider a new example (Fins=Wide ^ Tail=Large ^ Body=Slim).
Write these class probabilities as the product of α and common fractions from above. You do not
need to produce an actual final number; only an expression that will evaluate to the right answer.
3.c.i. (2 pts) P(Class=Red | Fins=Wide ^ Tail=Large ^ Body=Slim)

 = α(3/4)(3/4)(1/2)(1/2) (=9/10)
3.c.ii. (2 pts) P(Class=Blue | Fins=Wide ^ Tail=Large ^ Body=Slim)

 = α(1/4)(1/4)(1/2)(1/2) (=1/10)

Example Fins Tail Body Class
Example #1 Thin Large Slim Red
Example #2 Wide Small Slim Red
Example #3 Wide Large Fat Red
Example #4 Wide Large Fat Red
Example #5 Thin Small Slim Blue
Example #6 Thin Large Fat Blue
Example #7 Wide Small Fat Blue
Example #8 Thin Small Slim Blue

See Sections 13.5.2 and 20.2.2.

This is the same as
problem #2, Quiz #4,
WQ 2015; and also
#3 on Final Exam,
WQ 2012; except
Red fish replaces
Dog, Blue fish
replaces Cat, and
attribute & value
names were changed
into a fish theme.

You are not obliged to provide the (red) “(=9/10)” and “(=1/10)” evaluations; only the fractional products in black that
precede them in the answer. The final normalized probabilities (in red) are only for your information in seeing it work.

Unfortunately, your textbook uses an inconsistent
notation to refer to values of attributes. In Chap.
13, values of attributes (= random variables) are
lower-case (see Section 13.2.2). In Chap. 18, values
of attributes are upper-case (see Fig. 18.3). Here,
since we are in the machine learning part of the
course, we will follow Chap. 18 and use upper-case
values of attributes. Please do not be confused.

The probabilities in problem
2b are obtained by counting
examples in the training set.
E.g.,
P(Class=Red)=4/8=1/2
because 4 of the 8 examples
have Class=Red.
E.g.,
P(Fins=Thin|Class=Red)=1/4
because 1 of the 4 examples
with Class=Red also has
Fins=Thin.

The class website, in the “Study Guides” section, states, “In
particular, questions that many students missed are likely to
appear again. If you missed a question, please study it carefully
and learn from your mistake --- so that if it appears again, you
will understand it perfectly.”

Many students missed points on this question during Quiz #4 of
this quarter. Consequently, it appears again on the Final Exam.

I hope that you have studied carefully your mistakes, now
understand it perfectly, and now scored 100% on this problem.

8

4. (10 pts total, 2 pts each) WUMPUS WORLD MODELS.
Recall that a knowledge base KB entails a sentence S (written KB |= S) just in case the set of models
that make the knowledge base true is a subset of the models that make S true (a model is a possible
world). If this condition holds, it is impossible for KB to be true and S to be false. In such a case, S
must be true in all worlds in which KB is true.
 This question will concern only breezes and pits. Squares next to pits are breezy, and breezy
squares are next to squares with pits. We ignore the wumpus, gold, etc.
 Your agent did not detect a breeze at square [1,1] (column, row). Square [2,1] has a breeze.
Thus, your knowledge base KB = (¬ B_1,1) ∧ (B_2,1), where B = Breeze.

This diagram shows all possible models (= worlds) of adjacent pits (= black holes):

4.a. Circle the possible worlds above that are models of KB, i.e., circle M(KB).
4.b. Consider ONLY the sentence S1 = “Square [1,2] does not have a pit.”
Circle the possible worlds below that are models of S1, i.e., circle M(S1).

4.c. Does KB |= S1? (Y = yes, N = no) Y
4.d. Consider ONLY the sentence S2 = “Square [2,2] does not have a pit.”
Circle the possible worlds below that are models of S2, i.e., circle M(S2).

4.e. Does KB |= S2? (Y = yes, N = no) N

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

col=

? ?
 B

?

row=2

row=1

1 2 3 Square [2,1]

This problem is the same as #1 on WQ’2013
Mid-term. See Section 7.3 and Fig. 7.5, p. 241,
of R&N; and lecture slides for Propositional
Logic A and Review for Mid-term Exam.

Square [1,2]

9

5. (10 pts total) ONE FISH, TWO FISH, RED FISH, BLUE FISH. Decision Tree Classifiers.
(With apologies to Dr. Suess.) You are a robot in the aquarium section of a pet store, and must
learn to discriminate Red fish from Blue fish. Unfortunately, your vision sensors are in Black & White,
but Red fish have the same gray-scale tone as Blue fish. So, you must learn to discriminate them by
body parts. You choose to learn a Decision Tree classifier. You are given the following examples:

5.a. (4 pts) Which attribute would information gain choose as the root of the tree?

 Body .

5.b. (2 pts) Draw the decision tree that would be constructed by recursively applying information gain
to select roots of sub-trees, as in the Decision-Tree-Learning algorithm.

Classify these new examples as Red or Blue using your decision tree above.

5.c. (2 pts) What class is [Fins=Thin, Tail=Small, Body=Fat]? Blue

5.d. (2 pts) What class is [Fins=Wide, Tail=Large, Body=Medium]? Red

Example Fins Tail Body Class
Example #1 Thin Small Slim Red
Example #2 Wide Large Slim Red
Example #3 Thin Large Slim Red
Example #4 Wide Small Medium Red
Example #5 Thin Small Medium Blue
Example #6 Wide Large Fat Blue
Example #7 Thin Large Fat Blue
Example #8 Wide Small Fat Blue

Unfortunately, your textbook uses an inconsistent
notation to refer to values of attributes. In Chap.
13, values of attributes (= random variables) are
lower-case (see Section 13.2.2). In Chap. 18, values
of attributes are upper-case (see Fig. 18.3). Here,
since we are in the machine learning part of the
course, we will follow Chap. 18 and use upper-case
values of attributes. Please do not be confused.

Wide

Slim
Body?

Red

Fat

If root is Fins:
 Thin = RRBB, Wide = RRBB
If root is Tail:
 Small = RRBB, Large = RRBB
If root is Body:
 Slim=RRR, Medium=RB, Fat=BBB
(R = Red, B = Blue)
Note that you do not need math or a
calculator to answer this correctly.
Obviously, Fins and Tail do not reduce
entropy, while Body does.

Full credit if
your answers
are right for
the tree you
drew, even if
the tree itself
is wrong.

See Section 18.3.

Fins?

Blue

Blue

Red

Thin

Medium

This is the same as
problem #1, Quiz #4,
WQ 2015; and also
#8 on Final Exam, FQ
2013; except Red fish
replaces Oak wood,
Blue fish replaces
Pine wood, and
attribute & value
names were changed
into a fish theme.

After we choose Body for the root:
* Tail does not discriminate the two
remaining unclassified examples (#4/Red
& #5/Blue) because Tail for both is Small.
* However, Fins does separate them
perfectly, because Fins is Wide for #4/Red
and Thin for #5/Blue.

The class website, in the “Study Guides” section, states, “In
particular, questions that many students missed are likely to
appear again. If you missed a question, please study it caref
and learn from your mistake --- so that if it appears again, yo
will understand it perfectly.”

Many students missed points on this question during Quiz #
this quarter. Consequently, it appears again on the Final Exa

I hope that you have studied carefully your mistakes, now
understand it perfectly, and now scored 100% on this proble

10

ET

RW

UG

DJ

SO

TA

BU = Burundi
DJ = Djibouti
ET = Ethiopia
KE = Kenya
RW = Rwanda
SO = Somalia
TA = Tanzania
UG = Uganda

KE

BU

6. (10 points total, 2 pts each) CONSTRAINT SATISFACTION PROBLEMS.

You are a map-coloring robot assigned to color this East Africa map. Adjacent regions must be colored a
different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

6.a. (2 pts total) FORWARD CHECKING. Variable KE just now has been assigned value G, as
shown. Cross out all values that would be eliminated by Forward Checking.

BU DJ ET KE RW SO TA UG
R G B R G B R G B G R G B R G B R G B R G B

6.b. (2 pts total) ARC CONSISTENCY.
Variables KE and UG have been assigned values, as shown, but no constraint propagation has been
done. Cross out all values that would be eliminated by Arc Consistency (AC-3 in your book).

BU DJ ET KE RW SO TA UG
R G B R G B R G B G R G B R G B R G B R

6.c. (2 pts total) MINIMUM-REMAINING-VALUES HEURISTIC. Consider the assignment below. TA
is assigned and constraint propagation has been done. List all unassigned variables that might be
selected by the Minimum-Remaining-Values (MRV) Heuristic: BU, KE, RW, UG .

BU DJ ET KE RW SO TA UG
R B R G B R G B R B R B R G B G R B

6.d. (2 pts total) DEGREE HEURISTIC. Consider the assignment below. (It is the same assignment
as in problem 6.c above.) TA is assigned and constraint propagation has been done. Ignore MRV.
List all unassigned variables that might be selected by the Degree Heuristic: ET, KE, SO

BU DJ T KE RW SO TA UG
R B R G B R G B R B R B R G B G R B

6.e. (2 pts total) MIN-CONFLICTS HEURISTIC. Consider the complete but inconsistent assignment
below. UG has just been selected to be assigned a new value during local search for a complete and
consistent assignment. What new value would be chosen below for UG by the Min-Conflicts
Heuristic?. R .

BU DJ ET KE RW SO TA UG
B G G G G B B ?

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

See Chapter 6.

See Section 6.3.2.

See Section 6.2.2.

See Section 6.3.1.

See Section 6.3.1.

See Section 6.4.

X X X X

X X X X X X X X

11

7. (10 pts total) BAYESIAN NETWORKS.
7.a. (3 pts) Write down the factored conditional probability expression corresponding to this Bayesian Network:

 P(A | B, C) P(B | D, E) P(C | B, D, F) P(D | F) P(E | G, H) P(F | H) P(G) P(H)

7.b. (3 pts) Draw the Bayesian Network corresponding to this factored conditional probability expression:

 P(A | C, D) P(B | C, E) P(C | E) P(D | E, F, G) P(E | H) P(F | G, H) P(G) P(H | G)

7.c. (4 pts) Shown below is the Bayesian network corresponding to the Burglar Alarm problem, i.e.,
P(J,M,A,B,E) = P(J | A) P(M | A) P(A | B, E) P(B) P(E). This is Fig. 14.2 in your R&N textbook.

P(B)
.001

B E P(A)
t t .95
t f .94
f t .29
f f .001

A P(J)
t .90
f .05

Write down an expression that will evaluate to P(J=f ∧ M=t ∧ A=t ∧ B=t ∧ E=f). Express your answer as a series of
numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the
multiplication to produce a single number (probability). SHOW YOUR WORK.

 P(J=f ∧ M=t ∧ A=t ∧ B=t ∧ E=f)
 = P(J=f | A=t) * P(M=t | A=t) * P(A=t | B=t ∧ E=f) * P(B=t) * P(E=f)
 = .10 * .70 * .94 * .001 * .998

P(E)
.002

A P(M)
t .70
f .01

B

A F

D C

E

G H

B

A F

D C

E

G H

B E

A

M J

(Alarm)

(Earthquake) (Burglary)

(John calls) (Mary calls)

12

8. (10 pts total, 2 pts each) STATE-SPACE SEARCH. Execute Tree Search through this graph (do not remember
visited nodes, so repeated nodes are possible). It is not a tree, but pretend you don’t know that. Step costs are given next to
each arc, and heuristic values are given next to each node (as h=x). The successors of each node are indicated by the
arrows out of that node. (Note: D is a successor of itself). As usual, successor nodes are returned in left-to-right order.
(The successor nodes of S are A,B; and the successor nodes of B are D,C; in those node orders).
 The start node is S and there are two goal nodes, G1 and G2. For each search strategy below, indicate
(1) the order in which nodes are expanded, and (2) the path and cost to the goal that was found, if any.
Write “None” for the path and cost if the goal was not found. The first one is done for you, as an example.

8.a. (example) DEPTH-FIRST SEARCH:
8.a.i Order of expansion: S A B D D D D ...

8.a.ii Path to goal found: None Cost of path found: None
8.b. (2 pts) BREADTH-FIRST SEARCH:

8.b.i Order of expansion: S A B B D C G1

8.b.ii Path to goal found: S B C G1 Cost of path found: 26
8.c. (2 pts) ITERATIVE DEEPENING SEARCH:

8.c.i Order of expansion: S S A B S A B B D C G1

8.c.ii Path to goal found: S B C G1 Cost of path found: 26
8.d. (2 pts) UNIFORM COST SEARCH:

8.d.i Order of expansion: S A B B D D C C G2

8.d.ii Path to goal found: S A B C G2 Cost of path found: 22
8.e. (2 pts) GREEDY BEST FIRST SEARCH:

8.e.i Order of expansion: S B D D D D ...

8.e.ii Path to goal found: None Cost of path found: None
8.f. (2 pts) A* SEARCH:

8.f.i Order of expansion: S A B D C G2

8.f.ii Path to goal found: S A B C G2 Cost of path found: 22

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

S

A B

D G1

h=18

h=4

h=5 h=15

h=21

6 10

3

4
10

10

6
G2

5

See Section 3.4.3
and Fig. 3.17.

See Section 3.4.1
and Fig. 3.11.

See Section 3.4.2
and Fig. 3.14.

See Sections 3.4.4-5
and Figs. 3.18-19.

See Section 3.5.1
and Fig. 3.23.

See Section 3.5.2
and Figs. 3.24-25.

Please see the lecture slides for Uninformed Search, topic
“When to do Goal-Test? When generated? When popped?”
for clarification about exactly what to do in practical cases.

DFS can get caught in loops
during Tree Search (= do not
remember visited nodes).

BFS does the Goal-test before the
child is pushed onto the queue. The
goal G1 is found when C is expanded.

IDS does the Goal-test before the child
is pushed onto the queue. The goal G1
is found when C is expanded.

UCS does Goal-test when node is popped off

GBFS can get caught in loops during Tree Search (= do not
remember visited nodes). The heuristic value at node D (h=4)
is lower than any other heuristic value on the queue.

A* does Goal-test when node is popped off

It is OK if you wrote
SABDDD... instead of None
for “Path found.” It is OK if
you said N/A for “Cost of
path found,” or left it blank.

13

9. (10 pts total, -1 pt for each error, but not negative) GAME (ADVERSARIAL) SEARCH.

9.a. (5 pts total, -1 pt for each error, but not negative) MINI-MAX SEARCH IN GAME TREES.
The game tree below illustrates a position reached in the game. Process the tree left-to-right. It is Max's turn to
move. At each leaf node is the estimated score returned by the heuristic static evaluator.

9.a.i. Fill in each blank square with the proper mini-max search value.

9.a.ii. What is the best move for Max? (write A, B, or C) C

9.a.iii. What score does Max expect to achieve? 7

9.b. (5 pts total, -1 pt for each error, but not negative) ALPHA-BETA PRUNING. Process the tree left-to-
right. This is the same tree as above (9.a). You do not need to indicate the branch node values again.

Cross out each leaf node that will be pruned by Alpha-Beta Pruning.

3

(Min)

9

7

6 8

6

9 5 9 8 9 9

5 7

(Max)

(Max)

2 7 4 9 6 3 9 5 5 8 4 9 1 6 2 5 4 9 2 8 7 5 3 9 8 4

(A) (B) (C)

7

Red lines indicate where in the tree
pruning occurred. You are not obliged to
provide the red lines — only to cross out
pruned leaf nodes.

See Section 5.2.1.

See Section 5.3.

4 3

(Min)

(Max)

(Max)

2 7 9 6 3 9 5 5 8 4 9 1 6 2 5 4 9 2 8 7 5 3 9 8 4

(A) (B) (C)

14

10. (10 pts total, 1 pt each) FOPC KNOWLEDGE ENGINEERING IN THE TOY BLOCKS WORLD.
You are a Knowledge Engineer assigned to the Toy Blocks World, which involves directing a controller for a robot arm
that stacks children’s toy blocks one atop another, or on a table, into a desired configuration. For example, you are
concerned with configurations such as these:

 Here, we wish to describe only static (unmoving) configurations that eventually will become goals (targets) in the
Toy Blocks World. A separate module, which is not your concern, later will move the robot arm to achieve these goals.
Here, you need only to describe correctly in FOPC the static goal (target) configurations.
 Use the primitive predicate “Stacked(x, y)” to mean that “Block x is stacked directly on top of block y.”
Below, we also define new predicates “Clear(x)”, “OnTable(x)”, and “HigherThan(x,y)”, which may be used elsewhere.
Assume that all objects in the world are blocks, i.e., there is no need for Block(x) guard predicates.
 For each English statement below, write the best match letter chosen from the FOPC sentences that follow
at the bottom of the page. The first one is done for you as an example.
10.a. (example) A Assert that “Block x is stacked on block y” implies “Block y is not stacked on block x.”

10.b. (1 pt) I Define a predicate “Clear(x)” to mean that no block y is stacked on block x.

10.c. (1 pt) E Define a predicate “OnTable(x)” to mean that block x is on the table, i.e., not on any block y.

10.d. (1 pt) H Define a predicate “Above(x, y)” to mean that x is above y in a stack that includes both x and y.

10.e. (1 pt) B State that at least one block must be clear, i.e., at least one block must have no other block
stacked upon it. You may use the Clear(x) predicate defined in (10.b) above

10.f. (1 pt) F State that at least one block must be on the table, i.e., at least one block must not be stacked on
any other block. You may use the OnTable(x) predicate defined in (10.c) above.

10.g. (1 pt) K Define a predicate “HigherThan(x, y)” to mean that x is at a higher altitude above the table than
is y, even though x and y may be in different stacks. You may use the OnTable(x) predicate defined in (10.c) above.

10.h. (1 pt) C Assert that “Block x is above block y” implies “Block x is higher than block y.”

10.i. (1 pt) D Describe Configuration #1 in FOPC.

10.j. (1 pt) G Describe Configuration #2 in FOPC.

10.k. (1 pt) J Describe Configuration #3 in FOPC.

A. ∀x, y Stacked(x, y) ⇒ ¬Stacked(y, x) B. ∃x Clear(x)
C. ∀x, y Above(x, y) ⇒ HigherThan(x, y) D. OnTable(A) ∧ Stacked(B,A) ∧ Stacked(C,B) ∧ Clear(C)
E. ∀x, y OnTable(x) ⇔ ¬Stacked(x, y) F. ∃x OnTable(x)
G. OnTable(A) ∧ Stacked(B,A) ∧ Clear(B) ∧ OnTable(C) ∧ Stacked(D,C) ∧ Clear(D)
H. ∀x, y Above(x, y) ⇔ [Stacked(x, y) ˅ (∃z Stacked(z, y) ∧ Above(x, z))]
I. ∀x, y Clear(x) ⇔ ¬Stacked(y, x)
J. OnTable(A) ∧ Stacked(D,A) ∧ Clear(D) ∧ OnTable(B) ∧ Stacked(E,B) ∧ Clear(E) ∧ OnTable(C) ∧ Clear(C)
K. ∀x, y HigherThan(x, y)
 ⇔ [(¬OnTable(x) ∧ OnTable(y)) ˅ (∃w,z Stacked(x,w) ∧ Stacked(y,z) ∧ HigherThan(w,z))]

**** THIS IS THE END OF THE FINAL EXAM ****

(Table)

A

B

C

(Table)

A

B

C

(Table)

A B C

D D E
Configuration
#1

Configuration #2 Configuration #3

