CS-171, Intro to A.I. — Quiz#4 — Winter Quarter, 2016 — 20 minutes

YOUR NAME:			
YOUR ID:	ID TO RIGHT:	ROW:	SEAT:
	ots each) For each English sentence sentence (wff, or well-formed formula		
1.a (example)	"Every butterfly likes some flower.	,,	
	$erfly(x) \land Flower(y) \land Likes(x, y)$		
	$erfly(x) \wedge Flower(y) \wedge Likes(x, y)$		
	$erfly(x) \Rightarrow (Flower(y) \land Likes(x, y))$		
	$erfly(x) \Rightarrow (Flower(y) \land Likes(x, y))$		
· · · · —	Il butterflies are insects."		
· · · · · · · · · · · · · · · · · · ·	$y(x) \wedge Insect(x)$		
	$y(x) \Rightarrow Insect(x)$		
	$y(x) \wedge Insect(x)$ $y(x) \Rightarrow Insect(x)$		
	y(x) → IIISect(x) or every flower, there is a butterfly t	hat likes that flower "	
	$Ver(x) \wedge Butterfly(y) \wedge Likes(y, x)$	nat intoo that nowon	
_	$wer(x) \wedge Butterfly(y) \Rightarrow Likes(y, x)$		
, .	$ver(x) \Rightarrow [Butterfly(y) \land Likes(y, x)]$		
	$ver(x) \wedge Butterfly(y) \wedge Likes(y, x)$		
1.d (10 pts) "E	very butterfly likes every flower."		
	$tterfly(x) \land Flower(y)] \Rightarrow Likes(x, y)$		
	$erfly(x) \Rightarrow [Flower(y) \land Likes(x, y)]$		
	$erfly(x) \wedge Flower(y) \wedge Likes(x, y)$		
	$tterfly(x) \land Flower(y)] \Rightarrow Likes(x, y)$		
	here is some butterfly in Irvine that	is pretty."	
	$y(x) \wedge In(x, Irvine) \wedge Pretty(x)$		
	$y(x) \wedge In(x, Irvine) \wedge Pretty(x)$ $f(y(x) \wedge In(x, Irvine)] \Rightarrow Pretty(x)$		
<u>-</u>	$y(x) \Rightarrow [\ln(x, \ln(x))] \Rightarrow \Pr(x)$		
	very butterfly in Irvine is pretty."		
	$y(x) \wedge In(x, Irvine) \wedge Pretty(x)$		
	$y(x) \wedge In(x, Irvine) \wedge Pretty(x)$		
	$f(y(x) \land In(x, Irvine)] \Rightarrow Pretty(x)$		
D. ∃x Butterfl	$y(x) \Rightarrow [In(x, Irvine)] \land Pretty(x)$		
	very butterfly likes some flower."		
	$tterfly(x) \land Flower(y)] \Rightarrow Likes(x, y)$		
•	$erfly(x) \wedge Flower(y) \wedge Likes(x, y)$		
_	$erfly(x) \wedge Flower(y) \wedge Likes(x, y)$		
	$erfly(x) \Rightarrow [Flower(y) \land Likes(x, y)]$		
	ome butterfly likes some flower."		
•	erfly(x) \land Flower(y) \land Likes(x, y) tterfly(x) \land Flower(y)] \Rightarrow Likes(x, y)		
, , , , , , , , , , , , , , , , , , ,	$erfly(x) \wedge Flower(y) \rightarrow Likes(x, y)$		
•	erfly(x) \triangle [Flower(y) \wedge Likes(x, y)] erfly(x) \wedge Flower(v) \wedge Likes(x, v)		

2. (30 pts total, 10 pts each) BAYESIAN NETWORKS.

2.a. (10 pts) Write down the factored conditional probability expression corresponding to this Bayesian Network:

2.b. (10 pts) Draw the Bayesian Network corresponding to this factored conditional probability expression:

P(A | C, D) P(B | C, E) P(C | E) P(D | E, F, G) P(E | H) P(F | G, H) P(G) P(H | G)

2.c. (10 pts) Shown below is the Bayesian network corresponding to the Burglar Alarm problem, i.e., $P(J,M,A,B,E) = P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E)$. This is Fig. 14.2 in your R&N textbook.

Write down an expression that will evaluate to $P(J=f \land M=t \land A=t \land B=t \land E=f)$. Express your answer as a series of numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the multiplication to produce a single number (probability). SHOW YOUR WORK, first as the symbolic conditional probabilities from the graphs, then as the corresponding numeric probabilities from the tables above.

$$P(J=f \land M=t \land A=t \land B=t \land E=f)$$

[put symbolic here] =

[put numeric here] =

Scratch Paper

Scratch Paper