## Abstract

Real-world applications could benefit from the ability to automatically generate a fine-grained ranking of photo aesthetics.



### **Highlights:**

1. A deep CNN to rank photo aesthetics with pairwse rank loss

2. Joint learning of meaningful photographic attributes and image content cues which help regularize the complicated photo aesthetics rating problem

3. A new aesthetics and attributes dataset (AADB) containing aesthetic scores and meaningful attributes assigned to each image by multiple human raters

4. Two sampling strategies for computing ranking loss of training image pairs for robustness in face of subjective judgment of image aesthetics

5. State-or-the-art classification performance on the existing AVA dataset benchmark by simply thresholding the estimated aesthetic scores

## **Aesthetics & Attribute Database (AADB)**



AADB images span a range of consumer and pro photos but exclude synthetic and heavily edited images.

Compared to existing datasets (e.g., AVA [23]) it is unique in having attribute labels, multiple ratings per image, and multiple images rated by each worker.



## Photo Aesthetics Ranking Network with Attributes and Content Adaptation

Shu Kong<sup>1</sup>, Xiaohui Shen<sup>2</sup>, Zhe Lin<sup>2</sup>, Radomir Mech<sup>2</sup>, Charless Fowlkes<sup>1</sup> <sup>1</sup>Department of Computer Science, University of California Irvine, Irvine, California, USA

<sup>2</sup>Adobe Research, San Jose, USA



BalancElement ColorHarmony InterestContent ShallowDOF Good Lighting ObjectEmphsis RuleOfThirds



alancElement olorHarmony InterestContent ShallowDOF Good Lighting ObjectEmphsis RuleOfThirds



# for Aesthetics Ranking

We first train a simple model with Euclidean loss for numerical rating of photo aesthetics

$$loss_{reg} = \frac{1}{2N} \sum_{i=1}^{N} \|\hat{y}_i - y_i\|_2^2$$

## (a) fine-tuning with rank loss

Based on the regression net, we apply rank loss to fine-tune the network

 $loss_{reg+rank} = loss_{reg} + \omega_r loss_{rank}$ 

where

$$loss_{rank} = \frac{1}{2N} \sum_{i,j} \max\left(0, \alpha - \delta(y_i \ge y_j)(\hat{y}_i - \hat{y}_j)\right)$$
$$\delta(y_i \ge y_j) = \begin{cases} 1, & \text{if } y_i \ge y_j \\ -1, & \text{if } y_i < y_j \end{cases}$$

## (b) attibute-adaptive network

We use logistic loss to train an attribute prediction branch.

 $loss = loss_{reg} + \omega_r loss_{rank} + \omega_a loss_{att}$ 

## (c) attribute and content network

Similarly, we use softmax loss to train a content prediction branch whose output is used to multiplicatively gate contentspecific attribute-adaptive branches. The weighted sum of scores provides the final rating.



Demo, code and model can be download through project webpage http://www.ics.uci.edu/~skong2/aesthetics.html

### References:

[8] He, K., Zhang, X., Ren, S., Sun, J., ECCV, 2014 [15] Lu, X., Lin, Z., Jin, H., Yang, J., Wang, J., IEEE Trans. on Multimedia, 2015 [16] Lu, X., Lin, Z., Jin, H., Yang, J., Wang, J.Z., ACMMM, 2014 [17] Lu, X., Lin, Z., Shen, X., Mech, R., Wang, J.Z., ICCV, 2015 [23] Murray, N., Marchesotti, L., Perronnin, F., CVPR, 2012

Acknowledgements: This work was supported by Adobe gift fund, NSF grants DBI-1262547 and IIS-1253538.

**Fusing Attributes and Content** 







|                                                                                                                                                                          |                                                | Ехр                                                 | erir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nen                                       | tal                         | R                                     | es                 | sults                             | )                      |                              |                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|---------------------------------------|--------------------|-----------------------------------|------------------------|------------------------------|-----------------|--|--|
| We use<br>perform<br>achieve<br>training                                                                                                                                 | Spearma<br>ance ρ =<br>state-of-<br>with a cla | an's rh<br>$1 - \frac{6}{\Lambda}$<br>the-anassific | no ran<br>$\frac{\sum d_i^2}{\sqrt{3}-N}$ . End of the second sec | k corre<br>3y thres<br>sificatio<br>loss. | elation<br>shold<br>on ac   | n ( p<br>ling<br>cura                 | ) to<br>the<br>acy | o measu<br>rating<br>on AVA       | ure r<br>scor<br>A des | rankin<br>res, wo<br>spite r | g<br>e<br>never |  |  |
|                                                                                                                                                                          |                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                             |                                       | Performance on AVA |                                   |                        |                              |                 |  |  |
|                                                                                                                                                                          | Performan                                      | ce on A                                             | AADB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | -                           | Me                                    | thods              | 8                                 |                        | $\rho$                       | ACC (%)         |  |  |
| Method                                                                                                                                                                   | S                                              |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ho                                        |                             | Mu                                    | ırray              | et al. [23]                       |                        | -                            | 68.00           |  |  |
| AlexNe                                                                                                                                                                   | t FT Conf                                      | •                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 5923                                    | i                           | SPI                                   | P [8]              | ET Conf                           |                        | -                            | 72.85           |  |  |
| Deg                                                                                                                                                                      |                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5725                                    | -                           | DC                                    | NN                 | 16]                               |                        | -                            | 73.25           |  |  |
|                                                                                                                                                                          | Reg<br>Dec Doult (anose meter)                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 0.0239                      |                                       |                    | RDCNN [16]<br>RDCNN somentic [15] |                        |                              | 74.46           |  |  |
| $\mathbf{K}\mathbf{C}\mathbf{g} + \mathbf{K}\mathbf{a}$                                                                                                                  | ank (Cross-                                    | Talel)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6308                                    |                             |                                       | DMA [17]           |                                   |                        | -                            | 75.42<br>74.46  |  |  |
| Reg+Ra                                                                                                                                                                   | ank (withir                                    | i-rater)                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6450                                    | DM                          | DMA_AlexNet_FT [17]                   |                    |                                   | -                      | 75.41                        |                 |  |  |
| Reg+Ra                                                                                                                                                                   | ank (within                                    | n- & cr                                             | oss-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6515                                    | Reg                         | Reg<br>Reg+Rank                       |                    |                                   | ).4995                 | 72.04                        |                 |  |  |
| Reg+Ra                                                                                                                                                                   | ank+Att                                        |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6656                                    | Reg                         | Reg+Kalik<br>Reg+Att                  |                    |                                   | 0.5331                 | 75.32                        |                 |  |  |
| Reg+Ra                                                                                                                                                                   | ank+Cont                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6737                                    |                             |                                       | Reg+Rank+Att       |                                   |                        | ).5445                       | 75.48           |  |  |
| Reg+R                                                                                                                                                                    | ank+Att+                                       | Cont                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6782                                    |                             |                                       | Reg+Rank+Cont      |                                   |                        | 5581                         | 73.37           |  |  |
| Ingin                                                                                                                                                                    |                                                | com                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0702                                    |                             | Keş                                   | g+Ka               | INK+AU+CO                         |                        | .5581                        | 11.33           |  |  |
| Analysis of content-aware model on AVA dataset. Confidence-<br>weighted gating after fine tuning out-performs branch selection and                                       |                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                             |                                       |                    |                                   |                        |                              |                 |  |  |
| simple i                                                                                                                                                                 | pranch a                                       | /eragi                                              | ng.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                             |                                       |                    |                                   |                        |                              |                 |  |  |
|                                                                                                                                                                          |                                                |                                                     | -1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | 1 1                         |                                       |                    |                                   |                        |                              |                 |  |  |
|                                                                                                                                                                          | ground-truth                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | predicted                                 | 1   b                       | ranch                                 | ing                | confidenc                         | e                      | *                            |                 |  |  |
|                                                                                                                                                                          | content labe                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | content labe                              |                             |                                       |                    |                                   |                        | <u>,</u>                     |                 |  |  |
|                                                                                                                                                                          | $\rho$                                         |                                                     | 50/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.532                                     |                             | 0.533                                 | 0                  | 0.542                             | 20                     |                              |                 |  |  |
|                                                                                                                                                                          | acc (%) 75.41                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /5.33                                     |                             | 75.39                                 |                    | / 3.3 /                           |                        |                              |                 |  |  |
| Clustering is used to generate target<br>content label for AADB dataset<br>cluster1 cluster2 cluster3 Performance as a function of the<br>number of content branches (K) |                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                             |                                       |                    |                                   |                        |                              |                 |  |  |
|                                                                                                                                                                          |                                                | ρ vs. K                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                             |                                       |                    |                                   |                        |                              |                 |  |  |
|                                                                                                                                                                          |                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 0.6                         | 4                                     | 6                  | 8                                 | K                      | 10                           | 12 14           |  |  |
| over pu                                                                                                                                                                  | ss improve<br>re regress                       | ion los                                             | orman<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ce                                        |                             | the s                                 | san                | ne individ                        | dual                   | helps                        |                 |  |  |
| $\omega_r$                                                                                                                                                               | 0.0                                            | 0.1                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                         | _                           | -                                     | #Im                | igPairs                           | 2                      | million                      | 5 million       |  |  |
| AADB                                                                                                                                                                     | 0.6382 0.                                      | 6442                                                | 0.6515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6270                                    | 6                           |                                       | cros<br>vithi      | s-rater                           |                        | 0.6346                       | 0.6286          |  |  |
| AVA                                                                                                                                                                      | 0.4995 0.                                      | 5126                                                | 0.4988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 0.4672                                  |                             | within- $k$ cross-rater 0.6430 0.6448 |                    |                                   |                        | 0.6448                       |                 |  |  |
| Limited me<br>indicates of                                                                                                                                               | odel trans<br>different ta                     | ferabili<br>ste of                                  | ty v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | he moo<br>verage<br>vorkers               | lel acl<br>inter-<br>are st | hieve<br>subje                        | es s<br>ect<br>ore | similar ag<br>agreeme<br>consiste | greer<br>ent b<br>ent. | nent to<br>ut the            | o the<br>best   |  |  |
| user grou                                                                                                                                                                | OS.                                            |                                                     | J.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | ي م ال                      |                                       | #                  | images                            | <b>#</b> ₩             | orkers                       | $\rho$          |  |  |
| Spearman's                                                                                                                                                               | ρtest                                          |                                                     | d 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . <mark>6782</mark>                       |                             |                                       | >                  | 0                                 | 190                    |                              | 0.6738          |  |  |
| - F - minun 0                                                                                                                                                            | AADB                                           | AVA                                                 | nan's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                             |                                       | >                  | 100                               | 65                     |                              | 0.7013          |  |  |
| .Ħ AADB                                                                                                                                                                  | 0.6782 (                                       | ).1566                                              | Jear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                             |                                       | >                  | 200                               | 42                     |                              | 0.7112          |  |  |
| ∃ AVA                                                                                                                                                                    | 0.3191 (                                       | 0.5154                                              | <del>ري</del> 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                             |                                       |                    | ur hest                           | _                      |                              | 0.6782          |  |  |
|                                                                                                                                                                          |                                                |                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 100                                    | ) 150                       | 200                                   |                    | ar oost                           |                        |                              | 0.0702          |  |  |







|              | )      | renormance on AVA             |                |                |  |  |  |  |  |
|--------------|--------|-------------------------------|----------------|----------------|--|--|--|--|--|
| CE ON AADB   |        | Methods                       | $\rho$ ACC (%) |                |  |  |  |  |  |
|              | ho     | Murray <i>et al.</i> [23]     | -              | 68.00          |  |  |  |  |  |
|              | 0.5923 | SPP [8]<br>AlexNet_FT_Conf    | - 0.4807       | 72.85<br>71.52 |  |  |  |  |  |
|              | 0.6239 | DCNN [16]<br>RDCNN [16]       | -              | 73.25<br>74.46 |  |  |  |  |  |
| rater)       | 0.6308 | RDCNN_semantic [15]           | -              | 75.42          |  |  |  |  |  |
| n-rater)     | 0.6450 | DMA_AlexNet_FT [17]           | -              | 74.40          |  |  |  |  |  |
| n- & cross-) | 0.6515 | Reg<br>Beg   Beg              | 0.4995         | 72.04          |  |  |  |  |  |
|              | 0.6656 | Reg+Att                       | 0.5120         | 75.32          |  |  |  |  |  |
|              | 0.6737 | Reg+Rank+Att<br>Reg+Rank+Cont | 0.5445         | 75.48<br>73.37 |  |  |  |  |  |
| Cont         | 0.6782 | Reg+Rank+Att+Cont             | 0.5581         | 77.33          |  |  |  |  |  |







