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SUMMARY

In most examples of inference and prediction, the expression of uncertainty
about unknown quantities y on the basis of known quantities z i1s based on a
model M that formalizes assumptions about how z and y are related. M will
typically have two parts: structural assumptions S, such as the form of the link
function and the choice of error distribution in a generalized linear model, and
parameters 8 whose meaning is specific to a given choice of S. It is common
in statistical theory and practice to acknowledge parametric uncertainty about
f given a particular assumed structure S; it is less common to acknowledge
structural uncertainty about S itself. A widely used approach, in fact, involves
enlisting the aid of z to specify a plausible single “best” choice S* for S, and
then proceeding as if S* were known to be correct. In general this approach fails
to fully assess and propagate structural uncertainty, and may lead to miscali-
brated uncertainty assessments about y given z. When miscalibration occurs
it will often be in the direction of understatement of inferential or predictive
uncertainty about y, leading to inaccurate scientific summaries and overconfi-
dent decisions that do not incorporate sufficient hedging against uncertainty.
In this paper I discuss a Bayesian approach to solving this problem that has
long been available in principle but is only now becoming routinely feasible,
by virtue of recent computational advances, and examine its implementation in
examples that involve forecasting the price of oil and estimating the chance of
catastrophic failure of the U.S. Space Shuttle.
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1. INTRODUCTION

The general framework of problems in inference and prediction involves two sets
of ingredients: unknown(s) y—such as the causal effect of a treatment in inference, or
the price of something next year in prediction—and known(s) z, which will typically
include both data and context. The desire is usually to express uncertainty about
y in light of z, for instance through a probability specification of the form p(y|z).
Specifications of this type that involve conditioning only on things that are known
are rare, even in comparatively simple settings (e.g., Lindley, 1982); instead one
typically appeals to a model M that formalizes judgments about how z and y are
related.

1.1. Structural Uncertainty

The model may be expressed (e.g., Draper et al., 1987; Hodges, 1987) in two
partsas M = (5, 6), where S represents one or more sets of structural assumptions—
such as a particular link function in a generalized linear model, or a particular
form of heteroscedasticity or time dependence with non-IID data—and 6 represents
parameters whose meaning is specific to the chosen structure(s). (It will often be
possible to express a given model M in more than one way using this notation, but
that does not affect the discussion that follows.) Once S is chosen, 8 typically follows

t Address for correspondence: Statistics Group, School of Mathematical Sciences, University of
Bath, Claverton Down, Bath BA2 TAY, UK (d.draper@maths.bath.ac.uk).



2 DRAPER

fairly unambiguously, apart from technical concerns about reparameterization; but
how is S arrived at in practice?

Often the design by which the data in 2 were gathered renders some structural
assumptions compelling. For instance, the randomization employed in designed
experiments and sample surveys may be regarded as serving the dual purpose of
promoting comparability of treated (sampled) and untreated (unsampled) units and
of supporting the assumption of a particular form of conditional exchangeability of
the relevant outcome values (e.g., Draper et al., 1993a). But even in controlled ex-
periments and randomized sample surveys, key aspects of S—such as distributional
choices for residuals and functional forms for dose-response relationships—will usu-
ally be uncertain, and this is even more true with observational studies and data
gathered with nonrandom sampling plans.

Thus in practice the model often contains aspects that are not known with cer-
tainty: M is not necessarily a part of z. It is a routine feature of most statistical
methods to acknowledge parametric uncertainty about 8 once a particular form for §
is chosen, but it is less routine to acknowledge structural uncertainty about 5 itself.
A widely used approach, in fact, involves examining the data in z to identify a single
“best” choice 5™ for 5, and then proceeding as if 5™ were known to be correct in
making inferences and predictions. The field of data analysis, for instance, which has
grown considerably in the last thirty years (e.g., Hoaglin et al., 1985), is devoted to
the development of graphical and numerical methods, often based on the examina-
tion of residuals from the fit of a single standard model, that facilitate a data-driven
search for $*. The very fact of this search, however, implies structural uncertainty
that in general is not fully assessed and propagated with the S* approach, and the
result can be uncertainty assessments about y given z whose calibration is poor (e.g.,

in the sense that the empirical distribution of (@—yactual)/@(ﬁ) across one or more
such assessments is unacceptably far from (say) N (0,1)). When such miscalibration
occurs it is often in the direction of anti-conservatism: in retrospect one notices that
one’s uncertainty bands were not wide enough.

1.2. Over-Fitting

This problem, which is often referred to as over-fitting the available data, is well
known, but has yet to receive a fully satisfying treatment in statistical research and
pedagogy. Most of the leading textbooks on applied statistics (e.g., Cox and Snell,
1981) and regression (e.g., Weisberg, 1985) include warnings against over-fitting, but
also contain examples of empirical model-building of the $* form. Another applied
area in which the problem has potential to arise (e.g., Chatfield, 1993) is in time
series modeling, where model identification, fitting, and forecasting are all routinely
based on the same data.

Good regression texts (e.g., Mosteller and Tukey, 1977) offer advice on the value
of cross-validation—splitting the data into independent modeling and validation
data sets—as a partial solution to the over-fitting problem (e.g., Picard and Cook,
1984), but model uncertainty will typically remain even after cross-validation. More-
over, with small samples of data—precisely when structural uncertainty is greatest—
cross-validation may not be feasible, because there are too few data values with which
to carry out both the modeling and validation activities in a stable way. Bootstrap-
ping the modeling process (e.g., Efron and Gong, 1983)—creating bootstrap copies
of the available data, conducting independent modeling activities on each copy,
and combining the results in a way that is sensitive to the modeling uncertainty
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thus uncovered—may help, but as yet little is known about the performance of this
approach.

2. CONSEQUENCES OF UNACKNOWLEDGED STRUCTURAL UNCERTAINTY

There is a considerable recent literature on the degree of overconfidence generated
by basing inferences and predictions on the same dataset on which the search for
structure occurred; see, e.g., Freedman et al. (1986), Hjorth (1989), Miller (1990),
Pétscher (1991), and Faraway (1992). Instances may also be found in decision-
making in which structural uncertainty is documented by analysts but ignored by
consumers of the analysis. Examples of each of these phenomena follow.

2.1. Model Selection in Regression

Adams (1991) has conducted perhaps the most comprehensive investigation to
date of the effects of the search for 5™ on inference in regression. He used simulation
to estimate the combined effects of variable selection, transformation of outcome and
predictor variables, and deletion of outliers on the nominal observed significance level
of R?. He varied the sample size from 10 to 70, the number of predictors z from 5 to
30, and the degree of correlation among the predictors from 0 to .75, and simulated
random error and predictor values from ¢-distributions with degrees of freedom from
1 to co. He examined 114 regression strategies, each based on a different pattern
of presence or absence of (a) a simple Bonferroni-based outlier rejection rule, (b)
variable selection using a stepwise algorithm or C),, (c) transformation of the z values
with the Box-Tidwell method, and (d) transformation of the outcome y with the Box-
Cox approach. Averaging over characteristics of the datasets—all in null situations
in which y was unrelated to x, so that the average p-value for judging the significance
of the observed R? should have been 0.5—he found that the most opportunistic of the
114 strategies produced average nominal p-values well below 0.001, and that every
strategy involving either stepwise- or C)-based variable selection yielded average
nominal values below 0.01. The degree of similarity between some of the most
egregious strategies in Adams’s experiment and standard textbook prescriptions for
empirical regression model-building is disquieting.

2.2. Forecasting the Price of Qil

In 1980 the Energy Modeling Forum (EMF) at Stanford University assembled
a 43-person working group of economists and energy experts, whose goal was to
forecast world oil prices from 1981 to 2020 to aid in policy planning. The group
generated predictions based on each of 10 leading econometric models, under each of
12 scenarios embodying a variety of assumptions about inputs to the models, such as
supply, demand, and growth rates of relevant quantities. One scenario, the so-called
“reference,” was identified as a “plausible median case” and as “representative of the
general trends that might be expected,” although readers of the group’s summary
report (EMF, 1982) were cautioned not to interpret point predictions based on the
reference scenario as “[the working group’s] ‘forecast’ of the oil future, as there are
too many unknowns to accept any projection as a forecast.” The summary report
did conclude, however, that most of the uncertainty about future oil prices “concerns
not whether these prices will rise ... but how rapidly they will rise.”

One may identify three sources of uncertainty in this situation (Draper et al.,
1987): scenario uncertainty about the inputs to the models; model uncertainty (con-
ditional on scenario) about how to translate the inputs into forecasts; and predictive
uncertainty, conditional on scenario and model. The working group did not attempt
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to assess predictive uncertainty, and their final report concentrated on the refer-
ence scenario, which—despite their warning above—tended to informally downplay
scenario uncertainty as well, but model uncertainty conditional on the reference sce-
nario was evident in the report’s tables and figures. Fig. 1 below, for example, is a
plot of the yearly point predictions from each of the 10 econometric models under
the reference scenario from 1980 to 1990.
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Fig. 1. Forecasts of the price of oil by ezagh of the 10 EMF models under the
reference scenario, 1980-1990; lower solid line is actual price.

Averaging across models—giving them equal weight, since the EMF summary
report treats them evenhandedly—to obtain a predicted value for 1986, for instance,
would yield a figure of about $39, with implied 90% uncertainty limits (across mod-
els, conditional on the reference scenario, and ignoring predictive uncertainty) of
about ($27,$51). This uncertainty band is consistent with those produced by other
efforts parallel to EMFE’s at the time (e.g., Energy Information Administration,
1982); indeed, as Syme (1987) puts it, “[many| reputable institutions and indi-
viduals made forecasts of 1986 oil prices in the 1970s and early 1980s, predicting
prices over $40.” She goes on to report that an estimated $500 billion was invested
worldwide by governments and private companies in the early 1980s on the strength
of forecasts and informal uncertainty assessments like those in Fig. 1. The actual
1986 world average spot price of oil (see the lower solid line in the plot) was about
$13.

What went wrong? It is not fair to criticize forecasters after the fact for making
a sharply inaccurate prediction—no one can see into the future—but it is fair to note
that both scenario uncertainty, which might be expected to dominate, and predictive
uncertainty were missing in uncertainty assessments like that implicit in Fig. 1. In
particular, anyone relying only on Fig. 1 to produce predictive intervals would in
effect be assigning zero weight to the 11 non-reference scenarios. This observation
may seem nothing more than hindsight—after all, perhaps what actually happened
bore no relation to any of the 12 scenarios EMF’s working group examined, and one
can hardly be faulted for not anticipating something totally new—but in fact one
of the non-reference scenarios was rather like what actually occurred (Fig. 2). In
Section 6.1 below I examine the extent to which assessing and propagating between-
scenario and predictive uncertainty improves predictive calibration in this example.



ASSESSMENT AND PROPAGATION OF MODEL UNCERTAINTY 5

60

50

40

30

Crude Oil Price (1981 Dollars per Barrel)
20

10

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Year

Fig. 2. Forecasts of the price of oil by each of the 10 EMF models under one of the 11
non-reference scenarios, 1980-1990; lower solid line is actual price.

3. A STANDARD BAYESIAN SOLUTION, REVISITED

In theory there is a straightforward Bayesian approach to solving the problem of
failure to assess and propagate structural uncertainty, namely to treat the entire
model M = (S,0) as a nuisance parameter and integrate over uncertainty about
both S and 8, as in the expression

plole M) = [ plla, ) p(M ) dM = [ [ p(ula.6.9)p(6, S\ dbds . (1)

One forms a weighted average of the conditional inferential or predictive distributions
p(y|z, M), using as weights the posterior model probabilities p(M|z). This idea is
present, implicitly or explicitly, in the writings of workers in at least three fields:
statistics (e.g., Box and Tiao, 1962; de Finetti, 1972; Davis, 1979; Geisser and
Eddy, 1979; Smith and Spiegelhalter, 1981; Stewart and Davis, 1986; Brown and
Lindley, 1986; Draper et al., 1987; Hodges, 1987; Lavine, 1988, 1992; Raftery, 1988;
Madigan and Raftery, 1992); econometrics (e.g., Geisel, 1974; Leamer, 1978); and
artificial intelligence (e.g., Self and Cheeseman, 1987; Mackay, 1992). In the past
the implementation of equation (1) in practice has presented major computational
challenges, but advances in the last ten years have greatly reduced this burden. I
discuss computational issues in Sections 4 and 5 below. But first, what should one
take for the range of integration M’ in this equation?

Writing the posterior model probabilities p(M|z) as p(8, S|z) = p(S|z)p(8|z, 5),
it may be seen that the S* approach described in Section 1 is a special case of
equation (1), in which acting as if the structural assumptions in 5*, chosen after a
data-driven search, are “correct” corresponds to conditioning on $™*:

plylz, M') = p(ylz, 57) =/p<y|a:,0*,s*>p<o*|:c,5*> . (2)

This approach correctly assesses parametric uncertainty given S*—through the inte-
gration over 6* with respect to the posterior distribution p(6*|z, $*)—and inferential
or predictive uncertainty about y conditional on M* = (5*,8*), through the distribu-
tion p(y|z, 0%, 5*). But the search for S* implies structural uncertainty that has not
been fully assessed and included in the uncertainty about y contained in p(y|z, S*).
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Working backwards from p(M|z) = p(S|z) p(f|z,S) to the prior distributions
on which the posterior model probabilities are based gives p(M|z) = ¢ p(S5) p(6]5) -
p(z|0,5), where ¢ is a constant of proportionality. This expression includes two
familiar ingredients, a prior distribution p(6].9) on the parameters and the likelihood
p(z|0, 5)—both specific to a given structural choice S—but it also includes the
unfamiliar p(.9), a prior distribution on the set of all possible structural assumptions.
The key issue in improving upon the S* approach to modeling is how to specify p(.5).

In effect the S* approach solves this specification problem by equating p(95)
to point mass on 5%, a choice that may be too concentrated on a single set of
structural assumptions to lead to well-calibrated inferences and predictions. At the
other extreme, one might consider specifying p(.9) much more diffusely, hoping that
the updating process from p(S) to p(S|z) would automatically identify plausible
modeling choices. However (e.g., Diaconis and Freedman, 1986), in even the least
complicated applied problems with any hint of realism, the space of all possible
models is too large to guarantee the success of this updating.

For example, consider perhaps the simplest case of all, a finite sequence z =
(z1,...,2,) of binary outcomes with no predictors. A model for these data (e.g.,
Fienberg and Gilbert, 1970; Diaconis, 1977) is just a joint probability distribu-
tion for the observables, i.e., a single point in the (2" — 1)-dimensional simplex
{(po-0y--+3P1-1): 0 < Piyiyeci, < 1,p0.0+ -..+ p1..a = 1}. Making standard struc-
tural choices—such as taking the z; to have an IID, exchangeable, or Markovian
character—corresponds to conditioning on subspaces of this simplex of very low di-
mension. With only 10 observations, for instance, an amount of data insufficient
to support any but the crudest comparisons of model plausibility, the set M of
all possible models has dimensionality more than 1000, whereas making a standard
structural assumption such as “IID Bernoulli with success probability p” corresponds
to conditioning on a nonlinear subspace of dimension only 1. The problem is that
the dimensionality of M increases exponentially with n, a rate much faster than
that at which information about the relative plausibility of alternative structural
choices accumulates. One cannot count on “the data to swamp the prior” when
what is at issue is the structural specification of how known and unknown quantities
are related.

Thus the space of all models is “too big” to support a diffuse p(9): the promise
of inference unconditional on a specific set of modeling assumptions—which appears
to be offered by making the range of integration in equation (1) all of M—is unre-
alizable. However, although it will always be necessary to set p(.9) to 0 over most of
model space, a single structural choice $* chosen by a data-driven search amounts
to a specification of p(.9) that may well be “too small” to be well-calibrated. Is there
a compromise between 5* and all of M?

A reasonable intermediate position might be based in practice on model expan-
sion (e.g., Box, 1980; Smith, 1984), i.e., starting with a single structural choice
such as §* and expanding it in directions suggested by context, by the data-analytic
search that led to $*, or by other considerations. Good applied work already fea-
tures sensitivity analyses (e.g., Skene et al., 1986), in which the assumptions in 5™
are challenged by qualitatively exploring how much one’s conclusions would change
if an alternative set of plausible assumptions were made. Equation (1) takes this
process a step further, by integrating over structural uncertainty rather than simply
examining it qualitatively.
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4. CONTINUOUS MODEL EXPANSION

Model expansion fits naturally into the framework of hierarchical modeling (e.g.,
Lindley and Smith, 1972; DuMouchel and Harris, 1983), by adding to the top of the
hierarchy a level that corresponds to the structural uncertainty: the usual Bayesian
formulation on the left of (3)

S ~  p(9)

(0|S) p(0|S) (3)
(z6) ~  p(=|6) (16, 5) p(z]0,5) [
(y|:z:,0) ~ p(y|$,0) (y|m,0,5) ~ p(y|:6,0,5)

Two cases arise, discrete and continuous, according to whether the embedding of
S* in a larger subset of model space—by including the top level in the right side
of (3)—is indexed discretely or continuously. In the continuous case let a be the
expansion index and M, be the expanded model, of which $* = M (say) is a special
case.

is
replaced

by

2

0~ p®)

2

4.1. A Hierarchical Model for Location Inference

An early example of continuous model expansion was given by Box and Tiao
(1962), who reanalyzed Darwin’s data on the heights of self- and cross-fertilized
plants. These data are in the form of a paired comparison, so that it is reasonable
in modeling the pairwise differences z = (21, ...,z,) to condition on the structural
assumptions 8o = {z; = g+ oe;, e; lID symmetric about 0}, but there is no a
priori reason to insist on a specific distributional choice for the e;. Fisher (1935)
had previously analyzed these data by conditioning on the Gaussian; Box and Tiao
expanded Fisher’s model continuously, by embedding the Gaussian in the symmetric

power-exponential family p(e|a) = cexp{—%|e|2/(1+a)}, which includes the double

exponential (a = 1), Gaussian (a = 0), and uniform (o — —1) distributions as
special cases. Regarding Box and Tiao’s structural assumptions &; (say) as an
expansion of Sp, note that the three quantities i, o, and a may be viewed as playing
three different roles in this formulation: @ may be thought of as indexing one aspect
of the structural assumptions in &1, and p, the location parameter of interest (the
quantity y in equation (1)), and o, a nuisance (scale) parameter, are components of
6 = (p,0). Equation (1) in this context becomes

p(plz, S1) = //p(,qu,U, a) p(o,alz) doda, (4)

in which the integration over a may be regarded as acknowledging a form of struc-
tural uncertainty unaddressed in Fisher’s formulation. Interestingly, even though
Fisher’s model corresponds to placing all one’s prior mass on @ = 0 in the Box and
Tiao model, so that Box and Tiao expressed greater model uncertainty than did
Fisher, it is possible to have less posterior uncertainty about p in Box and Tiao’s
formulation than in Fisher’s; see Draper (1993).

Note that in model expansion applications involving parametric inference it is
important for the quantity of interest, in this case y, to have the same meaning for
each value of a in the expanded model M, so that for instance it would have been
problematic in Box and Tiao’s analysis to embed the Gaussian in a family including
asymmetric distributions. In predictive applications this sort of restriction does
not arise, because the quantity of interest, a future observable y, is automatically
common to all models M.
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4.2. Fized- and Random-Effects Models for Combining Information
From Related Fzperiments

A more recent example of continuous model expansion, which arises in the com-
bining of information from related experiments, is the case of so-called fized-effects
and random-effects models in meta-analysis (e.g., Wachter and Straf, 1990). Given
data from k experiments or studies designed to measure essentially the same out-
come, such as the change in mortality rate caused by a treatment in medical research,
one may wish to pool the information from these k sources, to create a better sum-
mary of what is known about the effects of the treatment in question than that
available from any single source. Letting #; be the underlying treatment effect in
study ¢, which may differ from that in study ¢’ due to unmeasured differences in
patient cohorts or treatment protocols, and letting z; be the corresponding data
summary in study ¢, a hierarchical Gaussian random-effects model like the following
may approximate one’s structural judgments:

(ma=71%)  ~  p(u)p(r?)

Mo il P N, ), (5)
@6 S N (e, Vi),

where the V; are regarded as known for convenience (typically each z; is based on
a large enough sample of patients that this provides an adequate approximation).
Fixed-effects models are a special case of equation (5) in which all of the 6; are
assumed equal, and correspond to random-effects models in which the between-
study variance parameter 72 is set to zero. Expanding the model from a fixed-effects
formulation to one in which 72 > 0 implies a net increase in uncertainty about the
underlying effect of interest, arising from the between-studies component of variance;
failing to adopt a random-effects formulation when necessary may therefore lead to
miscalibration.

Model (5) has an interesting application in the physical sciences, in the deter-
mination of fundamental constants such as the speed of light ¢. As Henrion and
Fischhoff (1986) and others have noted, if one plots a time series of the currently
accepted value of ¢ with uncertainty bands obtained from the standard fixed-effects
measurement error model, one notices that every 20 years or so a new value for ¢
is accepted that is inconsistent with the previous uncertainty assessments, demon-
strating the presence of bias in the measurement process in addition to the “ran-
dom” error present in the fixed-effects formulation. With ¢ indexing experiment and
7 indexing replication within experiment, hierarchically expanding the usual mea-
surement model z;; = u + €;; to account for the bias, as in the two-stage model
z;; = p+b; + e, bi = 0+ ¢, leads to better-calibrated uncertainty assessments
than those obtained from the fixed-effects model. See, e.g., Draper et al. (1993b)
for other uses of model (5) in physics and chemistry.
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4.3. Computation and Calibration Issues

Gaussian fixed-effects models are easy to fit using weighted least squares, and
when appropriate lead to particularly simple pooling rules by which information
from the available sources may be effectively combined. In contrast, even a rel-
atively straightforward empirical-Bayes approach to the random-effects model (5)
involves an iterative estimate of 72 (see, e.g., Efron and Morris, 1973). Thus prac-
titioners tend to favor fixed-effects models when appropriate, so much so that a
common modeling approach involves performing a test of heterogeneity of the #6;
and only adopting the random-effects formulation if the test rejects the null hypoth-
esis H: 72 = 0 of homogeneity (see DuMouchel, 1990, for criticisms of this strategy).
This is a so-called preliminary-test method, similar in spirit to testimators some-
times used in econometrics (e.g., Waikar et al., 1984). Methods of this type have
been shown inferior in both accuracy and calibration to random-effects methods,
such as the empirical-Bayes approach mentioned above, that deal more smoothly
with the uncertainty about 72 (see, e.g., Sclove et al., 1972; Greenland, 1993).

There is a direct analogy between preliminary-test methods and the S* approach
to modeling described in Section 1: in the S§* approach one searches for a single
“best” structure, tests its adequacy, and adopts it unless it fails the test. Using
model expansion to embed 5™ in a larger class of models, motivated by the structural
assumptions in S* that are most in doubt, treats the modeling uncertainty more
smoothly, and—as in the case of empirical Bayes improvements to testimators—
may be expected in general to yield better calibration.

Computation in hierarchical models has been difficult until recently, in most set-
tings other than that treated by Lindley and Smith (1972): Gaussian linear models
with a conjugate prior structure, in which closed-form expressions for many of the
quantities of interest are available. The application of a variety of approximation
methods in the last ten years to hierarchical models—including the EM algorithm
(e.g., Wong and Mason, 1985), Monte Carlo integration (e.g., Stewart, 1987), and
Gibbs sampling and related Markov-chain Monte Carlo (MCMC) methods (e.g.,
Smith and Roberts, 1993)—promises to greatly increase the routine feasibility of
continuous model expansion in applied work. The hierarchical structure in the right
side of (3) is particularly well suited to MCMC; see, e.g., Seltzer (1993) for educa-

tional applications.
5. DISCRETE MODEL EXPANSION

Although it is often preferable to perform model expansion continuously, so that
all the structural uncertainty in the expanded model formulation is accounted for,
it is not always possible to index departures from a single structural choice 5*
smoothly. Examples include

o Dynamic linear models with discrete state spaces (e.g., West and Harrison,
1989). In many applications of dynamic linear models it is natural to regard
the state space as continuous, but in other problems (e.g., Smith and West,
1983) it is more fruitful to view the underlying process of interest as moving
over time among a finite set of states that have direct substantive meaning;
and

e Discrete propagation of scenario uncertainty, as in the EMF oil example of
Section 2.2, in which 12 distinct scenarios meriting nonzero prior probability
but not readily indexed continuously were available.
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Discrete model expansion may also be used to approximate a continuous ex-
pansion, as in Spiegelhalter’s (1981) approximation of the power-exponential model
in Box and Tiao’s approach in Section 4.1 by the three-point distributional family
{Gaussian, uniform, double exponential} to produce a robust location estimator.
Recent applied examples of discrete model expansion include Racine et al. (1986),
Taylor (1989), and Moulton (1991). For the remainder of the paper I will concentrate
on the discrete case.

With a finite set & = {51,...,9,} of structural alternatives in the expanded
model, equation (1) becomes

m

p(ylz,S) = i/P(?AOE, Si,0;) p(Si, 0;]x) dB; = > p(Sil) p(yla, S5). (6)

=1
There are thus three ingredients in the computation of p(y|z,S):

e The choice, and prior plausibility, of the 5; over which model uncertainty is
assessed and propagated;

e The conditional inferential or predictive distributions p(y|z,S;) given struc-
tural choices 5;; and

e The posterior structural probabilities p(.5;|z).

Each of these components is addressed in the subsections that follow. The second
and third components are essentially technical; the first is substantive, and includes
the greatest possibility for a retrospective judgment of error.

5.1. Alternative Structural Choices: Specifying p(S9)

As the examples in Section 6 below indicate, the choice of the alternative struc-
tures S; in equation (6) is highly context-specific, but several general comments may
be made in any case.

o .. J. Savage used to say that one’s model should be “as big as a house.” One
way to express why this is desirable is by appeal to what Lindley (e.g., 1982)
calls Cromwell’s rule, which reminds us that any possibility receiving prior
probability zero must also have posterior probability zero. The main way
to avoid noticing after the fact that a set of modeling assumptions, different
from those one originally assumed, turned out to be correct is for one’s model
prospectively to have been large enough to encompass the retrospective truth.
This argues for the routine use of “big” models. In deciding how big is big
enough, one may undertake a kind of pre-posterior analysis of structural as-
sumptions, with an eye to the avoidance of retrospective regret at not having
included all plausible ways in which the unknown and known quantities might

be related.
o > p(Silz) p(y|z, %) is intended to be a discrete approximation to p(y|z, M)
= [ p(M|z) p(y|z, M) dM. To improve on the less satisfactory approxima-

tion p(y|z, 5*), one can try to include structures S alternative to S* satisfying
two criteria:

— 57 would have high posterior probability p(S!|z) (if not given zero prior
probability), and
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— 57 has inferential or predictive consequences p(y|z,S}) that differ sub-
stantially from those of 5.

This was referred to in Draper et al. (1987) as “staking out the corners in model
space.” One may employ this idea to define directions of departure from 5*
that are the most relevant for model expansion.

Other possible approaches to the generation of alternative structures S; were
mentioned at the end of Section 1: creating cross-validation or bootstrap samples
from the available data and conducting parallel modeling activities on each sam-
ple. Also see George and McCulloch (1993), who use Gibbs sampling to produce
posterior probabilities for subsets of predictor variables in regression, and Madigan
and Raftery (1992), who use ideas from expert systems, together with an implicit
p(9) strongly weighted against complicated structural choices, to find parsimonious
submodels of high posterior probability in large contingency tables.

Once a choice is made of the set §, the numerical specification of the prior proba-
bilities p(9;) will also typically be context-specific. In situations not strongly guided
by contextual considerations, one may again proceed by pre-posterior analysis, e.g.,
starting with constant p(S;) and computing forward with various possible datasets
z to see if the composite result p(y|z,S) appears to realistically assess uncertainty
about y given z, and then varying p(.5;) as needed. A form of prequential reasoning
(Dawid, 1984) referred to in Draper et al. (1987) as retrospective calibration may be
helpful in specifying the p(95;) in time series contexts: with enough data one may
(1) choose a variety of points in the past and pretend temporarily that they are
the present, (2) make predictions into the known “future,” building up a history
of forecast errors, and (3) adjust the prior weights p(S;) to bring the predictive
distributions into good calibration with the actual values.

5.2. Computing the Conditional Inferential/Predictive Distributions p(y|z, S;)

The second ingredient in discrete model expansion is the set of inferential or
predictive distributions

plola. $) = [ plyle., 5,00 p(6]Si,2) db. ™

This aspect of model expansion creates no new computational burden, since one
would have had to compute these distributions in any case as part of one’s sensitivity
analysis. Closed-form expressions for the results of the (possibly high-dimensional)
integration in equation (7) exist in important special cases, such as normal linear
models (e.g., Zellner, 1971), and approximations—based, for instance, on Monte
Carlo integration (e.g., Geweke, 1989)—are also available. For large n the simple
approximation

p(y|$,sz) ip(ylwasiaéi)7 (8)

where 6; is the maximum likelihood estimate (MLE) of 6; under structural choice
Si, may be sufficiently precise. For an example of a more accurate approximation of
p(ylz, S;) see equation (15) below.

5.3. Computing the Posterior Structural Probabilities p(S;|z)
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Evaluating the posterior structural probabilities p(S;|z) = ¢ p(5;) p(z|S;) comes
down to computing Bayes factors p(z|S5;)/p(z|5;) for structure S; against structure
S;, by calculating

p(alS) = [ p(6:15) plal8;, 50) b (9)

Several methods for approximating Bayes factors are available, including Gaussian
quadrature and a variety of simulation methods based on importance sampling,
acceptance/rejection techniques, and MCMC; see Kass and Raftery (1993) for an
excellent review. I focus here on two Laplace approximations (e.g., Lindley, 1961;
Cox, 1961; Leonard, 1982; Raftery, 1993), of which the first is

1 1 N R R
In p(z]9;) = 2 kiln(27) — §1H|Iz'| + In p(z|6;, 5:) + Inp(6:]5;) + O(n™"),  (10)

where k; is the dimension of 8;, éZ is either the mode of the posterior distribution
p(6;|z,S;) or the MLE, and I; is the observed information matrix evaluated at 6;.
A simpler approximation that is often somewhat less accurate with small samples
is obtained by noting that for large n, In|f;| = k; In(n) and the prior contribution
In p(6;]5;) becomes negligible, leading to

1 1 N
Inp(z]9;) = 2 kiln(27) — 2 kiIn(n) + Inp(z|6;, 5;) + O(1). (11)

The second and third terms on the right side of equation (11) are recognizable as the
basis of the Bayesian information criterion (BIC) for model selection (Schwarz, 1978;
cf. Rissanen, 1986). The first term on the right side, 1 k;In(27), has been omitted
in most other treatments of this approximation, but its inclusion has improved the
accuracy of expression (11) in examples | have examined involving the comparison
of structural choices 5; whose 6; have unequal k; (cf. Kashyap, 1982). The main
way in general to be sure when n is large enough to use equation (11) instead of
(10) is to compute them both and compare, although routine experience with this
approach will yield guidelines that over time will lessen the need for such explicit
comparisons.

In small-sample situations with vague prior information about the parameters,
care must be taken, if improper priors are used, to avoid the presence of undefined
constants in approximations (10); see, e.g., Spiegelhalter and Smith (1982) for an
approach to solving this problem. An alternative solution would involve the use
of proper but relatively uninformative priors whose specification is guided by pre-
posterior analysis.

5.4. Summary of a Large-Sample Approzimation to p(y|z,S)

To summarize this section, a simple large-sample approximation to p(y|z,S) =
E?:OO \/(S>|§) \/(T|§,S>) may be obtained by computing the MLE #; and maximum

log likelihood value for each model M; = (S;,6;), and setting k; = dim(6;). With

diffuse structural and parametric prior information and large n one may then take

g p(yl‘rﬂgz) = p(y|$7527é2)7 and
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o Inp(Sile) = 1 kiIn(27) — Thiln(n) + loglikyay + ¢,
with ¢ chosen to permit accurate normalization of the posterior structural probabil-

ities so that they sum to 1. It is also useful to note that if p(y|z,5;) has mean y;
and variance o2, and p(S;|z) = m;,

E(ylz,8) = Es[E(yle, )= mu = p,
=1
Viylz,S) = Es[V(ylz,9)]+ Vs[E(ylz, )]
= Y miol+ ) milui —p)’
=1 =1

within- between-
= structure | + | structure |. (12)
variance variance

This last expression may be used as the basis of a model uncertainty audit, in which
the overall inferential or predictive uncertainty about y is decomposed into the sum
of two terms: the average conditional uncertainty given each structural choice, and
the uncertainty about y arising from structural uncertainty itself. With the 5
approach of Section 1 this second term is set to 0, often inappropriately.
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Fig. 3. Scenario-specific forecasts obtained by averaging across models,
giving them equal weight.

6. EXAMPLES

6.1. Predicting Oil Prices

Continuing the example of Section 2.2, what may be said about the likely price
of oil in 1986 (say) from the vantage point of 1980, when scenario and prediction
uncertainty are accounted for? Fig. 3 plots the s = 12 scenario-specific time series of
point predictions from 1980 to 1990 obtained by averaging across the m = 10 econo-
metric models described previously, with equal weights (Aq,...,An) = (.1,...,.1).
With 7 indexing scenarios and j econometric models, most 1986 forecasts 7;; ranged
from about $30-60 per barrel, with the exception of those based on two scenarios
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(numbered 7 and 9 in Table 1 below) incorporating a large and sudden drop in oil
production capacity by the Organization of Petroleum Exporting Countries (OPEC)
in the mid-1980s.

Table 1 gives the scenario-specific means y; = >77.; A;§;; and standard devi-
ations (6; = [327 Aj (T — 7:)%]'/?) for 1986, together with scenario descriptors
and a probability assessment (7y,...,7;) based on how many nonstandard con-
ditions (relative to the “reference” scenario) must occur simultaneously to pro-
duce each scenario. Other probability specifications 1 examined, ranging as far
away from that in Table 1 as 7 = (.2,.1,.05,.05,.1,.1,.05,.1,.05, .1, .05,.05) and
(.49,.06,.06,.03,.06,.06,.03, .06, .03,.03,.03,.06), yielded conclusions qualitatively
similar to those presented here.

TABLE 1
Scenario-specific summaries of the oil price data.
Scenario (%) Mean (y;) | SD (6;) | Probability (m;)
1. Reference $39 $8 .32
2. Oil demand reduction 33 8 .08
3. Low demand elasticity 54 22 .08
4. Combination of 2 and 3 42 16 .04
5. Low economic growth 34 7 .08
6. Restricted backstop 41 9 .08
7. Drop in OPEC production 82 44 .04
8. Technological breakthrough 38 7 .08
9. Combination of 3 and 7 121 67 .04
10. Optimistic 29 5 .04
11. Combination of 2 and 7 48 11 .04
12. High oil price 59 12 .08

Notes: Restricted backstop = slow growth of alternative energy sources;
“Optimistic” combines scenarios 2 and 8, plus the assumption of expanded OPEC capacity.

Attempting to go beyond the implied uncertainty assessment in Figs. 1 and
2 requires acknowledging three levels of uncertainty: (1) between scenarios, (2)
between models within scenarios, and (3) between predictions within models and
scenarios. With y as the actual 1986 oil price, z as the means and SDs in Table 1,
and U?j as the predictive variance conditional on scenario and model, the analogue
of equation (12) in this case (with M standing for econometric model and S for
scenario) is

Ble.8) = Es{En(E(le, M8} = Y w5 = 5,
VOleS) = ()+@)+ @
= VelBw[E (e, M, S} + EstVulE(yle, M, $)]} +
Es{EalV (4], . 5)])

S

= Zﬂ'i(?i_g)Q + Zﬂ'i&? + Z?I‘Z'Z/\]’U?j. (13)
=1 =1 7=1

i=1

EMF made no attempt to assess the predictive SDs o;;. | have chosen values
of the form o;; = ¢ @;; for small to moderate ¢, in the range (.05,.3). To obtain a
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composite predictive distribution for y I simulated n;; = 100000 7; A; Gaussian ran-
dom variates with mean g;; and SD o;; and merged the resulting sample of 100,000
values together. The solid curve in Fig. 4 is a density trace for a typical result with
¢ = 0.25; this may be compared with the density (dotted line) implied by an analy-
sis of the type examined in Section 2.2, which conditions on the reference scenario
and ignores predictive uncertainty. The mean of the solid curve in Fig. 4 is about
$46, with an SD of about $30, and the (.01,.05,.5,.95,.99) quantiles are approxi-
mately ($14,$20,$39,$92,$187). The variance of this distribution (895) decomposes
into the three terms (scenario, model, prediction) = (354,363, 178), so that a model
uncertainty audit on the variance scale would attribute about 40% of the overall un-
certainty to variation across scenarios, 40% to variation across econometric models
given scenario, and 20% to predictive uncertainty given model and scenario. Only
the second of these terms is present in Figs. 1 and 2.

Density
003 004 005

0.02

0.01

0.0

(o] 20 40 60 80 100
Crude Oil Price (1981 Dollars per Barrel)

Fig. 4. Density of simulated predictive distribution for 1986 oil price, including
scenario, model, and prediction uncertainty (solid curve). Dotted density conditions
on the reference scenario and ignores predictive uncertainty.

The actual 1986 oil price of about $13 is unlikely given the assessment presented
here—for example, the ratio of the predictive density at $13 to its maximum value
(at about $37) is about 1/18. But $13 is by no means out of the question in the
context of this assessment, as it was in the informal assessments of those making
decisions on the basis of an implied uncertainty band of ($27,351). If decision-makers
had been basing their policies and business choices on something like Iig. 4 instead
of Fig. 1, a great deal more hedging against uncertainty would have been built into
their actions, and there was nothing to prevent this retrospectively happier outcome:
all of the information needed to carry out this analysis was available in 1980.

6.2. The Challenger Space Shuttle Disaster

On January 28, 1986, the U.S. space shuttle Challenger exploded shortly af-
ter takeoff, leading to an intensive investigation of the reliability of the shuttle’s
propulsion system. The explosion was eventually traced to the failure of one of the
three field joints on one of the two solid booster rockets. Each of these six field
joints includes two O-rings, designated as primary and secondary, which fail when
phenomena called erosion and blowby both occur.
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The night before the launch a decision had to be made regarding launch safety.
The discussion among engineers and managers leading to this decision included
concern that the probability of failure of the O-rings depended on the temperature ¢
at launch, which was forecast to be 31°F. There are strong engineering reasons based
on the composition of O-rings, which are made of rubber, to support the judgment
that failure probability may rise monotonically as temperature drops. One other
variable, the pressure s at which safety testing for field joint leaks was performed,
was available, but its relevance to the failure process was unclear.

Dalal, Fowlkes, and Hoadley (1989, hereafter DF'H) performed an extensive risk
analysis of the Challenger’s field joint system, restricting themselves to data avail-
able on the night before the launch. A key step in that analysis was the assessment
of the probability pf of primary O-ring erosion at ¢ = 31°. Fig. 5 is a plot of the
number of field joints experiencing primary O-ring erosion, as a function of launch
temperature, on each of the 23 shuttle flights previous to the Challenger’s. It may
be seen that the shuttle had never flown at a temperature lower than 53°, so that
the assessment of the unknown y = p3; requires considerable extrapolation from the
body of existing data. DFH presented a lucid analysis of the data relevant to pf
employing the S* modeling approach of Section 1, and concluded—after relating p5;
to the overall probability of catastrophic failure of the shuttle—that it should have
been possible from the available data to foresee the unacceptably high risk created
by launching at 31°. Here I offer a reanalysis of these data that focuses on model
uncertainty, without (for reasons of space) bringing in the important ingredient of
utility. For related alternative analyses see Lavine (1991), who does touch on utility,
and Martz and Zimmer (1992).

Number of Field Joints With Primary O-Ring Erosion

o~ x

— A X X x X

= xgxxgﬁ XX XX xx X
30 40 50 60 70 80

Temperature (Degrees F)

Fig. 5. Scatterplot of number of field joints with primary O-ring erosion versus
launch temperature for the 23 shuttle flights prior to the Challenger.

In DFH’s model field joint failures were independent, both between and within
shuttle flights, so that one may regard the data z as consisting of n = 6-23 = 138
binary failure observations, together with the associated values of temperature ¢
and leak-check pressure s (see Table 1 in DFH for the raw data values). DFH noted
(a) that failure probability did not seem to be strongly related to s and (b) that a
logistic regression of primary O-ring erosion against temperature ¢, entered linearly
in the model, fits the observed data of Fig. 5 well. After a thorough sensitivity
analysis examining alternative models, DFH conditioned on the logistic structural
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choice (with linear ¢ and no s) to estimate p§, and assessed uncertainty at 31° with
a parametric bootstrap. They obtained a posterior distribution for p3; given z (see
Fig. 8 below) that was well approximated by a beta distribution with parameters
a =2.52 and 3 = 0.36.

This distribution has a median of .95, a mean of .88, and a variance of .028, and
is equivalent in information content to a + § = 2.52 + 0.36 = 3 binary field-joint
failure observations at 31°, an assessment that seems to understate extrapolation
uncertainty. Lavine (1991) arrived at a similar judgment; by examining the ex-
trapolated estimates of p4%; based on link functions other than the logit, and by
using a nonparametric method that assumes little more than independence of the
binary failure outcomes and monotonicity of the relationship between temperature
and failure probability, he obtained much wider implied uncertainty bands for pg;
than those produced by DFH’s logistic formulation.

An examination of DFH’s sensitivity analysis reveals that the following structural
variations ; are good candidates for inclusion in a discrete model expansion:

e Three link functions—Ilogit, probit, and complementary log-log;

e Three functional forms for the temperature variable t—linear, quadratic, and
no temperature effect at all, which was a conclusion favored by some involved
in the Challenger decision-making process; and

e Two functional forms for leak-check pressure s—linear or no effect.

The m = 6 structures S = {cloglog-t, logit-t, probit-t, logit-(¢, s), logit-(¢, ?), no ef-
fect} span most of the model uncertainty implied by this list of structural variations.
I will use this set of 5; in what follows. Continuous model expansion from DFH’s
S* logit-t choice—by embedding the logit in a parametric family of link functions
(e.g., Taylor, 1988)—yields results similar to those presented here.

The models in § all have the same generalized-linear-model structure,

indep _ .

(1‘]|0“SZ) ~ B(pj), FZ l(pj) = tf;j@n 7=1,....n, (14)
where #;; is the vector of predictor values for observation j assuming structure S5;.
With diffuse prior information about the 6;, Zellner and Rossi (1984) have shown
that the required conditional posterior distributions p(y|z,.S;) in this case are given
approximately by

F (pg)—t16:]?

A e d
p(pilz, Si) = (2m 7)™ /2e 24T '

E—l pa
dp? ( t)

; (15)

where HAZ and IAZ are the MLE and observed information matrix for structure 9,
¢222 = t;f{lti, and t; is the vector of predictors corresponding, under structural choice
Si, to a new temperature t. These conditional densities are well approximated by
beta distributions obtained by equating moments. Fig. 6 plots the six densities
{p(p4;|z, Si), S; € 8}, which differ substantially in both center and spread.

Table 2 presents the results of a discrete model expansion, using equal prior
probabilities on the S; and employing approximation (11) to compute the posterior
structural probabilities p(9;|z). (Changing from approximation (10) to (11), with
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and without the %kz In(27) term, produces differences in the composite posterior
distribution of the same order of magnitude as variations in the prior on § differing
from constant p(5;) multiplicatively by a factor of 2 in any component, and all of
these choices yield conclusions qualitatively similar to those given below.) Fig. 7
plots the expected number of field joints with primary O-ring erosion, conditional
on each of the structural choices in § (cf. Fig. 1 in Lavine, 1991, which motivated
the model uncertainty analysis presented here). It may be seen that, with the ex-
ception of the no-effect horizontal line, the expected-value traces in Fig. 7 all fit
the data well in the observed range—in fact they are virtually coincidental through-
out that range—but the various structural assumptions in § lead to quite different
extrapolations at 31°.

30

Density

1

Fig. 6. Conditional posterior distributions p(p$; |z, S;) for the six structural choices in S.

TABLE 2

Discrete model expansion results for the Challenger data.

p(pgllmﬁsi)

S; e B | Mean | Median | Variance | p(S;|z)
cloglog | 2.0 | .06 | 971 | 1.0 1009 282
logit-¢ 2.66 | .294 | .900 .96 .0227 .286
probit-¢ 2.40 | 410 | .854 .93 .0327 .300
logit-(t,s) | 2.17 | .302 | .878 .95 .0307 .064
logit(1,£%) | 116 | 1 | 537 | .69 204 063
no effect 7.0 | 131. | .051 .05 .0003 .005

| composite [ 1.11 [ 155 .88 | 98 | 0473 | — ]

The posterior structural distribution (the last column in Table 2) differs consid-
erably from {point mass on logit-t}, the implicit result of DFH’s $*-style analysis:
the assumption of no temperature effect is sharply discredited by the evidence, but
all five of the other structural choices are sufficiently plausible in light of the data
to deserve inclusion in the overall uncertainty assessment for p%,;. The composite
posterior distribution p(p%;|z,S) (see Fig. 8) is well approximated by a beta distri-
bution with parameters 1.11 and 0.155; this distribution has median .98, mean .88,
and variance Vigithin-structure T Vbetween-structure = -0338 +.0135 = .0473, more than
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twice the value conditional on the logit-t model (here V}eiween-structure 1S about 30%
of the total). The resulting assessment of p3; has about the same mean as DFH’s
result but includes considerably more uncertainty: p(p4;|z,S) is equivalent to only
about 1 binary observation at 31°, an implied information content 56% smaller than
DFH’s value, and the 90% central interval for p§; based on the discrete model ex-
pansion runs from .33 to 1, as compared with DFH’s interval (.5,1).
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Fig. 7. Expected number of field joints with primary O-ring erosion,
conditional on each of the structural choices in S.

The model uncertainty audit presented here is not the only possible analysis of
these data; for instance, V(p§;|z,S) could easily increase somewhat more if more
structures S5; were to receive nonzero prior probability. This possibility raises the
following question: In the limit as more and more model uncertainty is acknowl-
edged, won’t the composite posterior distribution degenerate to beta(0,0), i.e., no
information at all at 31°? The answer is no; the available engineering judgment
on the monotonicity of pf in ¢, and the data in Fig. 5 that support this judgment,
would together imply an informative distribution like the one presented here if other
variations on the monotone theme were included in the model expansion (cf. Lavine,
1991, whose analysis conditioning only on independence and monotonicity resulted
in a nonparametric MLE for p§; of (.33,1)).

Density
4

Fig. 8. Posterior distributions p(p3;|z,S): dashed line is DFH result, solid line is exact
result from discrete model expansion (eqn. (6)), dotted line is beta approximation to (6).
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Note that in this problem the results of the discrete model expansion only serve
to reinforce DFH’s overall conclusion: it turns out that for any acceptably small risk
r, the posterior distribution for psy, the probability of overall catastrophic failure
(not just primary O-ring erosion), concentrates even more of its mass on the interval
(r,1) when the extra structural uncertainty is taken into account. This need not
have been so: as the oil price example shows, one may arrive at different substantive
conclusions about what constitutes a sensible decision after model expansion than
before. Note also that the good fit of the logit-t model did not imply that model
expansion was not needed—the identification of a single model that fits well does
not preclude the possibility of other models, with different inferential or predictive

consequences, fitting equally well or better.
7. DISCUSSION

Accuracy and Calibration. Much of statistical theory and practice empha-
sizes the value of accurate inferences and predictions, where accurate means “likely
to be close to the truth” in some sense. However, as Dawid (1984, 1985), Hodges
(1987), and others have noted, to be fully useful an inference or prediction must also
have an uncertainty assessment attached to it, and it is also important for this “give-
or-take” to be accurate, because otherwise choices are made that incorporate too
little or too much hedging against one’s actual uncertainty. Thus calibration is also
a goal in successful inference and prediction. These two goals compete: by making
sufficiently strong modeling assumptions one may easily produce narrow intervals
that look good on accuracy grounds, but of what use are they if they consistently
miss the truth?

The majority of statistical theory has focused on a kind of conditional calibration,
in which one makes a set of modeling assumptions M and then figures out how to
maximize accuracy subject to calibration constraints given M. This approach is
purely deductive: if M is true then the interval (A, B) (say) is the best answer one
can obtain. The problem is that if the particular set of modeling assumptions chosen
to produce one’s intervals turns out in retrospect not to have been correct, it does
not necessarily help much to have verified that one’s inferences assuming M is true
were conditionally accurate and well calibrated. This makes choosing a single M
upon which to condition seem like a bad idea.

As the discussion in Section 3 indicates, however, the space M of all possible
models relating knowns z to unknowns y is too big to avoid conditioning on a subset
M’ of it. The inability of the data—when the prior distribution on M is specified
too diffusely—to reliably identify which modeling assumptions will retrospectively
be seen to be correct argues for making this subset small, but too small runs the risk
of poor calibration (e.g., Lindley, 1982). In the oil price example of Sections 2.2 and
6.1, for instance, what decision-makers wanted was the likely price of oil taking all
relevant forms of uncertainty into account, not the likely price of oil given that the
reference scenario would come to pass. Model expansion permits additional forms
of structural uncertainty, whose qualitative treatment in the past has not always
led to good decision-making, to enter the probabilistic calculations quantitatively,
in effect by permitting more realistic choices of M’. This can lead to decisions based
on better-calibrated uncertainty assessments.

Alternative Approaches. There are a variety of techniques for dealing with
model uncertainty that differ in spirit or implementation from the approach pre-
sented here, for instance robustness methods based on solving a minimax problem
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over a neighborhood of 5™ in model space rather than integrating over such a neigh-
borhood (e.g., Huber, 1981), or Bayesian sensitivity analyses examining the mapping
from prior to posterior across a class of prior distributions or likelihoods (e.g., Berger
and Berliner, 1986); nonparametric methods (e.g., Lehmann, 1975; Friedman, 1991);
data-analytic methods based on transformations and diagnostics (e.g., Carroll and
Ruppert, 1988); and other approaches, including empirical forecast error distribu-
tions (Williams and Goodman, 1971). I have argued here that the S* approach,
which may be thought of as a naive data-analytic method, is often inferior to model
expansion, but beyond remarks of this type—and theoretical criticism of most of the
other methods on, e.g., coherence grounds—Ilittle is known about the comparative
merits of these various strategies empirically. Theory and case studies closing this
gap would have important practical implications.

The Value of Calibration Assessment. The proportion of inferential and
predictive applications in which an attempt is actually made to assess calibration,
by direct comparison of one’s uncertainty assessment for the unknown y with the
actual value of y, appears to be fairly low (a notable exception is in weather fore-
casting; see, e.g., Dawid, 1986). In some applications the actual value is difficult or
impossible to observe, making such comparisons problematic, but in many cases it
is both possible and desirable to check one’s calibration in this way. The ease with
which instances of understated uncertainty like those in Section 6 may be found,
particularly in situations where substantial extrapolation from the body of available
data is necessary for decision-making, makes plausible the speculation that empirical
work of a statistical nature would be improved by an increase in calibration activity
(see, e.g., Shlyakhter and Kammen, 1992, for a catalogue of appallingly bad un-
certainty assessments in physics, energy policy, and demography). Such an increase
would be nontrivial, requiring the explicit setting aside of study resources that would
have been used in some other way, but it would seem that the long-term benefits of
investment in calibration-monitoring would often outweigh the costs. Examples in
which this cost-benefit tradeoff is formalized would be useful.

Presentation of Structural Uncertainty. At a minimum consumers of anal-
yses like those in Section 6 need to be able to examine the conditional inferen-
tial/predictive distributions (e.g., Fig. 6) and the posterior structural probabilities
(e.g., Table 2), so that they may decide for themselves if the composite result is
sensible. The already pressing need for a software system that encourages the real-
time exploration of the mapping from assumptions to conclusions (e.g., Dickey, 1973;
Smith et al., 1987) is only heightened by the acknowledgment of structural uncer-
tainty in addition to parametric and predictive uncertainty. One possible solution is
provided by XL1sPSTAT (Tierney, 1990), which supports graphical displays in which
the prior structural probabilities and prior distributions on the parameters may be
smoothly varied and the composite result is updated smoothly.

Combining Forecasts. Model expansion may be thought of as a kind of com-
bining of information from the structures over which model uncertainty is propa-
gated. When the goal is prediction this amounts to combining forecasts, an activity
with a large literature (e.g., Clemen, 1989; Palm and Zellner, 1992). Much of this
work is devoted to constructing a weighted average composite forecast in the hope
that the result will have smaller uncertainty than any input forecast. Such an out-
come would contrast with the findings of Section 6, where overall uncertainty was
greater than that implied by any single structural choice. It is worth noting that
the uncertainty of the composite forecast will be smaller than that of the inputs
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only when all the input forecasts are assumed to be unbiased, a situation that clearly
does not hold when substantial structural uncertainty is present (cf. Table 1). The
situation is identical to that in choosing between fixed-effects models (which as-
sume no bias) and random-effects models (which allow for bias) in meta-analysis
(Section 4.2).

The Category “Other.” Model expansion is not a panacea; in particular it
cannot protect one from the occurrence of something totally unexpected. In the oil
price example of Sections 2.2 and 6.1, for instance, how much prior probability should
have been placed on a scenario like the OPEC oil embargo of 1973, several years
before it occurred? One is tempted by such events to set aside a bit of probability
in model space for “other,” but how much probability, and where should it be put?
This problem has no solution; inference and prediction always involve an assumption
of conditional exchangeability of known and unknown quantities at some level of
conditioning (e.g., Draper et al., 1993a). Barnard (1988, personal communication)
has put the dilemma well:

“When the time for decision has arrived, we can do no other than suppose we
have spanned the set of possibilities; while at the same time we must allow that
we may after all be mistaken—by not closing our minds to that possibility, and
so dismissing evidence that may present itself later that our assumptions did
not encompass the truth. To come to a decision, while retaining receptiveness
to evidence that our decision was wrong, is the only rational course.”

An Unpleasant (Short-Run) Outcome. A greater acknowledgment of model
uncertainty often has the consequence of widening one’s uncertainty bands in pursuit
of better calibration. Since hedging against uncertainty is hard work, this is an
unpopular turn of events, at least in the short run. But, in view of the oil price
example, which is worse—widening the bands now, or missing the truth later?
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