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Statistical Science
1990, Vol. 5, No. 4, 465-480

On the Application of Probability Theory to

Agricultural Experiments. Essay on
Principles. Section 9.

Jerzy Splawa-Neyman

Translated and edited by D. M. Dabrowska and T. P. Speed from the Polish original, which
appeared in Roczniki Nauk Rolniczych Tom X (1923) 1-51 (Annals of Agricultural Sciences)

Abstract. In the portion of the paper translated here, Neyman introduces a
model for the analysis of field experiments conducted for the purpose of
comparing a number of crop varieties, which makes use of a double-indexed
array of unknown potential yields, one index corresponding to varieties and
the other to plots. The yield corresponding to only one variety will be
observed on any given plot, but through an urn model embodying sampling
without replacement from this doubly indexed array, Neyman obtains a
formula for the variance of the difference between the averages of the
observed yields of two varieties. This variance involves the variance over
all plots of the potential yields and the correlation coefficient r between the
potential yields of the two varieties on the same plot. Since it is impossible
to estimate r directly, Neyman advises taking r = 1, observing that in
practice this may lead to using too large an estimated standard deviation,
when comparing two variety means.

Key words and phrases: Field experiment, varieties, unknown potential

yields, urn model, sampling without replacement, correlation.

[Numbers in brackets correspond to page numbers
in the original text.]

I will now discuss the design of a field experiment
involving plots. I should emphasize that this is a task
for an agricultural person however, because mathe-
matics operates only with general designs. In design-
ing this experiment, let us consider a field divided into
m equal plots and let

Ul, U2’ ) Um

be the true yields of a particular variety on each of
these plots. If all the members U; are equal, each of
them may be called the average yield of the field.
Otherwise the average yield may be thought of as the
arithmetic mean
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Biostatistics, School of Public Health, University of
California, Los Angeles, California 90024-1722. T. P.
Speed is Professor and Chair, Department of Statistics,
University of California, Berkeley, California 94720.
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The yield from the ith plot measured with high
accuracy will be considered an estimate of the num-
ber U..

If we could repeat the measurement of the yield on
the same fixed plot under the same conditions, we
could use the above definition of the true yield. [See
the Introductory Remarks for a few comments on
Neyman’s notion of true yield.] However, since we can
only repeat the measurement of a particular observed
yield, and this measurement can be made with high
accuracy, we have to suppose that the observed yield
is essentially equal to U;, whereas differences that
occur among yields from various plots should be at-
tributed to differences in soil conditions, especially
considering that low and high yields are often clus-
tered in a systematic manner across the field.

To compare v varieties, we will consider that many
sequences of numbers, each of them having two indices
(one corresponding to the variety and one correspond-
ing to the plot):

l]il;(]i%””lji (i=1;2,"'y")-

Let us take v urns, as many as the number of varieties
to be compared, so that each variety is associated with
exactly one urn.
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Jerzy Neyman in Poland, not long after 1923.

FiG. 1.
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In the ith urn, let us put m balls (as many balls as
plots of the field), with labels indicating the unknown
potential yield of the ith variety on the respective
plot, along with the label of the plot. Thus on each
ball we have one of the expressions

(13) l]ily L]z'Z» ] [Jik, tt l]im
[29]

where i denotes the number of the urn (variety) and &
denotes the plot number, while Uy, is the yield of the
ith variety on the kth plot.

The number

2 Ui

m

i

is the average of the numbers (13) and is the best
estimate of the yield from the ith variety on the field.

Further suppose that our urns have the property
that if one ball is taken from one of them, then balls
having the same (plot) label disappear from all the
other urns.

We will use this scheme many times below and will
call it the scheme with v urns.

If we dealt with an experiment with one variety, we
would have a scheme with one urn. In this case,
expressions denoting yields will not have a variety
index.

The goal of a field experiment which consists of the
comparison of » varieties will be regarded as equivalent
to the problem of comparing the numbers

a, @z, -+, Q,

or their estimates by way of drawing several balls from
an urn.

The simplest way of obtaining an estimate of the
number a; would be by drawing « balls from the ith
urn in such a way that after noting the expressions on
the balls drawn, they would be returned to the urn. In
this way we would obtain « independent outcomes of
an experiment, and their average X; would, based on
the law of large numbers, be an estimate of the math-
ematical expectation of the result of our trial. Let x
denote a possible outcome of the experiment consist-
ing of drawing one ball from the ith urn. [In modern
terminology, lower case x, with or without subscripts,
denotes a random variable, and upper case X the
corresponding realized values.] We shall calculate Ex.
Since the probability of drawing a ball from the ith
urn is the same for all balls, and equal to 1/m, and
since all possible results of the trial are
[30]

contained in the sequence (13), so of course

1 m
Ex=— Y Ux=a
m p—

and the average of the results of the « trials would be
an estimate of a;.

Unfortunately in practice, returning the balls to the
urns cannot be carried out. We are obliged to sample
without replacement.

Let x,, - -, x¢; X5, Xz, ---, X, be the possible and
true outcomes, respectively, of « trials carried out in
this way. Let us assume, as is often the case in practice,
that the sequence (13) contains numbers that do not
differ greatly from one another and so may be consid-
ered equal. We can group the sequence in such a way
that, in the first group, we put all the smallest numbers
Vi1, there being mp, such numbers, in the second class
the next smallest of the remaining numbers, whose
common value is V;; and whose number is mp,, etc.

In this way we replace sequence (13) by

(14) ‘/ily Vi2’ ) Vi

representing possible outcomes of the trial where the
probability that the outcome of the first trial is Vj,
18 Pp..

Let us assume that on the first ball drawn we have
the number V. What is the probability of the out-
come of the next trial?

First of all, the urn contains one fewer balls. Fur-
ther, the number of elements in the kth class of (14)
is reduced by one. Therefore the probability p} that
the outcome of the second trial is equal to V;,, where
r # k turns out to be

1 mpy DPr
r= =p, +
LA S (|

whereas the probability of the result Vi in the same
trial
[31]

18

p_Mmpe— 1 _

1 —pw
pbr = =Pr— 5
m-—1

m-1

In the end, after x — 1 trials being carried out in the
same way, we will find the probability p;, that the
outcome of the «th trial is V;;,, where V, has not been
drawn so far, is equal to

mpr  _ (k= 1)pr
m—«k+1 T m—k+1

k=1 __
Pro =

and the probability p;* that a number V;, which has
been drawn [ times previously, is equal to

(k—1)p,—1
m—k+1 '

mp,—1
m—«k+1

=1 __
Pa = s

We see that knowledge of the outcomes of preceding
trials has an effect on the probability of outcomes of
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subsequent trials, so that trials conducted in this way
are not independent. If we assume that the number m
is very large in relation to «, so that «/(m — «) is
negligible in comparison with the probabilities p;, then
it follows from the above formulas that information
about previous trials will not affect probabilities of
subsequent trials. Therefore the trials will turn out to
be independent, and we will be able to apply the law
of large numbers, and our definition of a true yield,
and along with it known formulas from probability
theory. If each of the v varieties is sown on « plots,
then m = vk and the condition for the independence
of experiments will be that the ratio 1/(v — 1) is small,
in other words, the number of varieties » to be com-
pared is large.

Should we draw from this the conclusion that in the
case where the number of varieties is small, probability
theory cannot be applied?

[32]

Of course not. It follows from previous considera-
tions, however, that for small » or m the application
of the common formulas should be justified in a man-
ner different from that which we have just described,
or that these formulas should be modified.

I will derive new formulas below. I will mention
‘here a certain misunderstanding which is frequently
repeated in the agricultural literature, whose expla-
nation is connected to the above argument.

This misunderstanding consists in the unjustified
assertion that probability theory can be applied to
solve problems similar to the one discussed only if the
yields from the different plots follow the Gaussian law.

This assertion arose because, consciously or uncon-
sciously, a different framework was used from the one
mentioned above when applying probability theory.

More precisely, the yields from different plots were
considered as independent measurements of one and
the same number—the true yield of the variety on the
field—and the measurement was assumed to be sub-
ject to errors in the sense of Laplace. To justify this
framework, experiments were carried out consisting
of sowing a large number of identical plots with a
single variety, and it was investigated whether the
yields followed the Gaussian law, as would be true if
the framework above reflected experimental practice.
(I will not discuss in detail here the meaning of agree-
ment with the Gaussian law; the reader should refer
to publications devoted to this topic.) Such experi-
ments had both positive and negative results, and in
those cases where positive results were questionable,
the discrepancies were justified as being an unusual
event. Even among the greatest optimists, I found
words suggesting doubts. [Here Neyman refers to
Gorskiego and Stefaniowa in the 1917 volume of the
same journal.]

We have to say that in many cases the yields do not
follow the Gaussian law. This is highly likely
[33]

a priori. Further, the consistency with the law of
random errors should not justify a framework which
is based on an assumption of independence of the
measurements. In discussing this matter we will
quickly get to a discussion of the assumption and
constraints on the number of plots on the field or on
the number of varieties compared.

In this way we conclude that consistency with the
Gaussian law is not sufficient to justify the application
of known formulas, and even this (consistency) is open
to doubt.

The proposed framework even makes it superfluous,
since it is enough to assume that our measurements
are independent, and for that we need a large number
of plots on the field.

I will now discuss the case where the ratio

K

m — K

is not so small as to be negligible, and so the experi-
ments cannot be considered independent. Consider
the design with one urn. First of all we have to say
that the arithmetic mean from « measurements may
be considered an estimate of the mean

Y U

a=="—

m

[The notation here is slightly confusing. There is no
connection between the subscript ; on U; and that on
the random variable x;. Indeed the latter subscript is
superfluous at this point, although the author un-
doubtedly has the ith urn in mind; cf. (16) and (17)
below.] For that, as follows from Tchebychev’s theo-
rem, it is enough that

u?=E(x; — a)®

tends to zero as k — . [u? is a generic expression for
variance (cf. the modern use of 62), here of the random
variable x; which is the average of « trials.]

We calculate u?:

1
K2

w=Ex?—a*=

K
[ Sxp+23 xwx,-,] -a?,
k,r

k=1

where the sum Y x;.x; runs over all nonidentical
expressions of the type x;.x; with & # r. [Here x;,
is the random variable corresponding to the kth
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of the « trials and x; = (1/k) Y =1 xix.] Of course

_ _]; 2;‘.1 Ui 2(K - 1) — 2
”2_x< m +m(m—1),§;UkU') @
[34]
__m—« ZZ‘.I(Uk—aV: m=k_
k(m—1) m km-1) v

Dividing this expression in the numerator and de-
nominator by m, and remembering that m > «, we
conclude that

. o 1=(/m)
wm =l Wy~

Thus in this case the arithmetic mean of several
outcomes of the trial may be regarded as an estimate
to the expected value a.

Let us make another comment. It is possible that,
apart from the arithmetic mean just discussed, there
exists an different function F,,, of the results of the
« experiments for which EF,,, = a, which could also
be regarded as an estimate of the number a. It is also
possible that the standard deviation of the function F
is smaller than u. In this case, as it follows from the
law of large numbers, F|,,, may be associated with a
better estimate of a than the arithmetic mean. There-
fore we can look for the function F,, ,, which will give
the best estimate.

We shall consider a linear function

F(x,x) = Alxl + A2x2 + ... + )\,x,.

[In this equation and what follows the random vari-
able corresponding to the ith and kth of the « trials
are now denoted by x; and x, respectively. Neyman
refers to Markov (1913) at this point.] In order that a
number F, ) could be considered as an estimate to a,
it is sufficient that

EF(,‘,,‘) = |E Z )\,,x,, =a
k=1

ie.,

ZA,':I.

i=1

In order for this estimate to be the best it is necessary
that

M? = E(Fey — a)?

be a minimum.

(35]

Of course

M2=E|:2 )\;(xi—a)]

i=1

=Y NE(x—a)+ 23 MME(x; —a)(x— a)
ik

=1

2
m—1 '2 Aixk],

ik

~oh | Zai-

=1
since

m o 2
E(x; — a)? = Oy (Zz a) — a_%];

E(x; — a)(xx — a)
_ 23 TR (Ui—a)(Up—a)

m(m-—1)
_—Xh (Ui—a)z_ oy
m(m—1) m-—1
From the identity
Z Ai =1,
{t follows that

22Aikk=1_z>\?’
ik =1

SO

M2
m-—1

_ a%,[m—x+ mz,’,k (A,_ Ak)zl
- k(m—1)

is smallest when

A=A, (=2,3,---,k)
(36]
ie,
, =1,2,---,x)

K
E:— Xi m — x
Fin = xl ’ ‘= k(m — 1) 7

We see that for the case considered, the arithmetic
mean of x experiments is the best estimate of the
number a.
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An estimate of the standard deviation p will be
found by calculating [The text now reverts to the
notation described on Neyman’s page 34.]

2

-1 1

z xik_—zlxir)
K K g

E(xx — xi)2 = E(

_(K—l)m 2_(K—l)m 2
_K(m—l)du_ m—« ko

where

Y xi = Y Xir — Xik-
k r=1

Therefore the estimate of the standard deviation of

the arithmetic mean can be denoted by u” whose
square is equal to
m2 _ m—«k 2:—: (Xik - Xi)2
(16) m(K - 1) K
—_M—Kk
Tmk—-1""
[Here X is the kth observed outcome, 2 =1, ---, «

and X; = (1/«) 2:-1 X1

This formula should be used instead of formula (6),
when « is not negligible compared with m, as is most
common. [Formula (6) is analogous to (16), but was
derived under the assumption of independence of the
observations, and so is without the factor (m — x)/m.]

On the other hand, if the experiments are conducted
with replacement the formula (8) [Formula (8) gives the
usual unbiased estimate of the variance based upon a
sequence of independent random variables with common
mean and variance. For the next few formulas, x;, x, etc.
are members of a set of » independent random variables
with expectation a, variance p?, and x, = (1/v) ¥ %=1 xx.]
remains unchanged in this case since [35]

2
E(xi—x0)2=E<V 1 xi—EZ’ xk)
14 Vv ;

i

v —

1 (Ex? — Ex;xp).

v
[37]
Since the numbers x; and x, are independent,
therefore
Ex;x, = (Ex.)* = a®
Thus

v—1
v

pu

E(x; — x0)* = % (Ex? — a?) =

v-1 m—«
= — 0oy
v xkm-1)""Y

and as an estimate of u? we may use

v
= o
v—1

’2

In the case when the X; follow the Gaussian law, multi-
plying n” or u” by 0.67449, we get E, an estimate of the
probable average error. [E is thus an estimate of the
inter-quartile range. The expression ¢’? just above was
defined earlier in the paper, and is the usual biased
estimate of a population variance, whereas u”? is the
corresponding unbiased estimate.]

It should be emphasized that the problem of determin-
ing the difference between the yields of two varieties
becomes more complicated in this case. Let us consider
the scheme with v urns. [From now on, x; and x; are the
averages of « trials corresponding to varieties i and j,
sampled as in the scheme with v urns.] It is easy to see
that

E(x — xj) =a; — a,

so that the expected value of the difference of the partial
averages of yields from two different varieties is equal to
the difference of their expectations. It can also be deter-
mined that this difference is an estimate of a; — a;, but
the expression for the standard deviation becomes more
complicated:

pies = E[x — 2 — (a; — @)
=E(x — @)’ +E(x; — q))*
- 2E(x; — @) (x; — a;)
= w2 + u2 — 2Exx; — aiqj].

The expression in the brackets will be calculated
separately:

1 K K
lExixj == E 2 Xir 2 Xji | = lEx,-kxﬂ
K k=1 =1

— T Yk (UaUy + Uy Uy)
m(m — 1)

(38]

— Yo U 221 Uy — Y5 UpUp
m(m — 1) '

Taking into account

m m
Y Ui = ma, > Ui = ma;,
k=1 k=1 :

we get

a;a; — (1/m) ¥ i Ui U

lE(xixj) - aq = m— 1
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Thus if we denote by r the correlation coefficient betweex}
the yield of two varieties on the same plot

r= (1/m) Y-y UikUjk — a;q;

O'U..O'Uj

I

we get

lExixj - aaq = _m raul.aul,

-1

and for the standard deviation of the difference of the
two averages we get

2=t ——ro
l"x;—xj = My, ”'xj m — 1 U;UU,

a7

2 2 2kr
= py, + py + Halhs; o

m—«k
It is easy to see that u?_, tends to zero with u.,, u.,. It is
of interest to see the relation between the standard
deviations of the differences of the partial averages com-
puted using formulas (6), (12) and the above ones. [For-
mula (12) states that the variance of the difference of
two independent random variables is the sum of their
variances.] Let us denote

6‘2 2 2 2
RZ = RZ_.. = R% +RZ.
K
[39]

Of course

v—1
v

2 =
”'x,-—x,- -

[sz LR+ RX.R,C:I
j v—1 iy

= Rl — TR+ Ry - 2rR.R, )
[The right-hand side is really an estimate of the left-
hand side.] It is easy to see that
R% + R — 2rR.R. > 0,
since
R; + R} £2R.R.= (R, +*R,))’=0, r<l
Therefore we conclude that
Pry < Ris.

We can further determine that for given R., R, the
variance pfi_,,. increases as v and r increase.
We achieve the largest value of the ratio

2
[T

= D2
R x—x;

q

1

= 1 -_—
2
VR,

[R% + RZ — 2rR, R, ]

only if
R.=R,, r=1,

P J
when
q = 1: ”'x;—xj = Rx;—x,--

The smallest value of this ratio g is equal to zero, which
can be achieved when
R.=R,, r=-1, v=2.

In this case,

g=0, ui.,=0, R, =2R:

(40]

We see that the standard deviation of the difference of
partial averages computed using the standard formulas
is usually too large. It can be conjectured that in many
cases this has led to the observed difference

X - X

being thought a random fluctuation, when in fact it
exceeded many times the value of the standard deviation
computed using the correct formula, i.e., in cases when a
real difference between the yields of the two varieties
being compared may be regarded as existing.

When applying (17) there is a difficulty, since we do
not have a direct way of calculating r. In cases where it
can be assumed that the two varieties being compared
react in the same way to the soil conditions, we should
take r = 1. [This corresponds to what is frequently termed
unit-treatment additivity; see, e.g., Kempthorne, 1952,
Cox, 1958, and Holland, 1986.] If we want to use the
value of r computed through experiment, we will face the
problem of introducing some assumptions about the na-
ture of the variation of soil conditions over the field and
the distribution of plots which are sown with comparable
varieties. I hope to return to these questions in one of
my future papers. They lead to a different design which
ensures greater precision.

For the time being, we will conclude that since it is
impossible to calculate directly an estimate of r, it is
necessary to take r = 1; the method of comparing varieties
or fertilizers by way of comparing average yields from
several parallel plots has to be considered inaccurate.

Returning to the problem of determining the value of
the true yield, we conclude that we are interested pri-
marily in the true value of the difference between the
yields of two varieties. Rejecting the asspmption of in-
dependence of experiments, we cannot use theorem 2 [a
standard form of the central limit theorem], which, al-
though it has been generalized [here Neyman refers to
Markov, 1913, for the exposition of an unpublished result
of S. Bernstein] to some cases of dependent experiments,
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does not apply to the case we are considering here. From
these explanations it follows that it would be safe to
adopt the following definitions. By the term “true value”
of the difference of the yields of two varieties, sown on «
selected plots, we mean a

[41]

number A associated with the difference of the observed
partial averages X; — X; in such a way that the probability
P, of preserving the inequality

IX,’ - Xj - Al < tax;-xj
is greater than

-5
for all ¢t > 0.

We can determine empirically that the difference of
partial averages of the plots sampled shows a fair agree-
ment with the Gaussian law distribution. This encour-
ages us to name the true difference in yields of two
varieties a number § associated with the difference of the

corresponding partial averages, under the condition that
the probability of preserving the inequality

T<Xi—X—6<T,

1 f’rz t 2 )
exp\ — dt,
gl _ N2x YT xp( 20;‘.2_,‘1,

m —« 2kr
— - 2 2
U;.z_xj = (K — 1) |:U,' + o; + — Uiﬂj]

and T, < T, are arbitrary numbers. [A misprint (or
inconsistency) in the preceding equation has been elimi-
nated; cf. formulas (16) and (17).]

We should remember, however, that this definition is
not properly justified.

Of course everything that has been said about the
comparison of varieties applies to the comparison of
fertilizers.

[42]

equals

where,

Comment: Neyman (1923) and
Causal Inference in Experiments and

Observational Studies

Donald B. Rubin

Dorota Dabrowska and Terry Speed are to be most
warmly thanked for bringing this fundamentally im-
portant but previously recondite early work of Jerzy
Neyman to the attention of the statistical community.
It is an honor to be asked to discuss this docu-
ment, which reinforces Neyman’s place as one of our
greatest statistical thinkers and clarifies the debt
all modern statisticians interested in causal inference
owe to Jerzy Neyman. There are several specific
contributions in this article (hereafter referred to as
Neyman, 1923) that I feel are particularly noteworthy.
To delineate these for my discussion, I first provide a
brief summary using a mix of Neyman’s notation and
more standard current notation. I then discuss Ney-
man’s original definition of causal effects in random-
ized experiments, extensions of it to experiments with
interference between units and versions of treatments,
and further extensions to observational studies. Three

Donald B. Rubin is Professor and Chairman, Harvard
University, Department of Statistics, Science Center, 1
Oxford Street, Cambridge, Massachusetts 02138.

other contributions in Neyman (1923) are also ana-
lyzed: his proposal for the completely randomized
experiment, his proposal for using repeated-sampling
evaluations over randomization distributions, and his
specific results on variance estimation in the com-
pletely randomized experiment. Throughout, I at-
tempt to relate these contributions of Neyman’s to
proceeding and contemporary work of R. A. Fisher
and others, and to subsequent work, including my own
cited in the Dabrowska and Speed introduction. My
conclusions regarding the relationship of Neyman
(1923) to other work are briefly summarized in the
final section.

1. AN OVERVIEW OF NEYMAN (1923)

Neyman begins with a description of a field experi-
ment with m plots on which v varieties might be
applied: “- .. Uy, is the yield of the ith variety on the
kth plot”; Uy is a “potential yield” (Neyman’s term)
not an observed yield because i indexes all varieties
and k indexes all plots, and each plot is exposed to
only one variety. Throughout, the collection of poten-
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