
Software Architectures

ICS 221 October 19, 1999

Software Architectures

Richard N. Taylor

Information and Computer Science
University of California, Irvine
Irvine, California 92697-3425

taylor@ics.uci.edu
http://www.ics.uci.edu/~taylor

+1-949-824-6429
+1-949-824-1715 (fax)

Software Architectures

ICS 221 October 19, 1999

Acknowledgments

Will Tracz

Neno Medvidovic

Peyman Oreizy

Dewayne Perry

Software Architectures

ICS 221 October 19, 1999

Overview
■ Rationale: why the focus, and what’s new

■ Definitions and focus areas

■ Processes and domain-specific software architectures

■ Dynamic change

Software Architectures

ICS 221 October 19, 1999

Why the Focus on Architecture?
■ Architectures are not new -- there has long been a focus

on getting the high-level design in good shape. So what’s
new?

❏ Making the architecture explicit
❏ Retaining the description
❏ Using the description as the basis for system evolution,

runtime change, and for analysis
❏ Separating computation from communication
❏ Separating architecture from implementation
❏ Component-based development emphasis
❏ A shift in developer focus

Software Architectures

ICS 221 October 19, 1999

Explicit versus Implicit
■ The architecture is there whether we make it explicit or

not

■ If it is implicit, then we have no way of
❏ understanding it
❏ conforming to it (architectural mismatch)
❏ controlling or directing its change (architectural drift or

erosion)

Software Architectures

ICS 221 October 19, 1999

An Explicit Architecture Provides a
Structural Framework for:

■ System development

■ Component design and implementation

■ System evolution

■ Composition of systems

■ Systematic reuse

■ Retention and exploitation of domain knowledge

Software Architectures

ICS 221 October 19, 1999

Differences Between
Architecture and Design

■ Architecture is concerned about higher level issues
❏ components v. procedures or simple objects
❏ interactions among components v. interface design
❏ constraints on components and interactions v. algorithms,

procedures, and types

■ Architecture is concerned with a different set of structural
issues

❏ Large-grained composition v. procedural composition
❏ Component interactions (protocols) v. interaction

mechanisms (implementations)
❏ Information content v. data types and representations

■ Architecture and Patterns

Software Architectures

ICS 221 October 19, 1999

Architectures and Implementations
■ A one-to-many relationship

■ Bi-directional mapping must be maintained

■ Some components may be generated

■ The special role of connectors

Software Architectures

ICS 221 October 19, 1999

Definitions
■ Perry and Wolf

❏ Software Architecture = {Elements, Form, Rationale}

■ Garlan and Shaw
❏ [Software architecture is a level of design that] goes beyond the

algorithms and data structures of the computation: designing and
specifying the overall system structure emerges as a new kind of
problem. Structural issues include gross organization and global
control structure; protocols for communication, synchronization, and
data access; assignment of functionality to design elements; physical
distribution; composition of design elements; scaling and performance;
and selection among design alternatives.

■ Kruchten
❏ Software architecture deals with the design and implementation of the

high-level structure of software.

❏ Architecture deals with abstraction, decomposition, composition, style,
and aesthetics.

Software Architectures

ICS 221 October 19, 1999

Key Architectural Concepts
■ A component is a unit of computation or a data store.

Components are loci of computation and state.

■ A connector is an architectural building block used to
model interactions among components and rules that
govern those interactions.

■ An architectural configuration or topology is a
connected graph of components and connectors which
describes architectural structure.

❏ proper connectivity
❏ concurrent and distributed properties
❏ adherence to design heuristics and style rules

Software Architectures

ICS 221 October 19, 1999

Architecture-Based
Software Engineering

An approach to software systems development which uses
as its primary abstraction a model of the system’s

components, connectors, and interconnection topology

Software Architectures

ICS 221 October 19, 1999

Focus Areas
■ Architecture description techniques

■ Analysis based on architectural descriptions
❏ Program-like analyses
❏ Predictive performance analyses
❏ Static and dynamic

■ Architectural styles

■ Evolution
❏ Specification-time
❏ Run-time

■ Refinement

■ Traceability

■ Design process support

Software Architectures

ICS 221 October 19, 1999

Architecture Description Techniques
■ Principal Problems

❏ Aid stakeholder communication and understanding

■ Desired Solutions
❏ Multiple perspectives

Software Architectures

ICS 221 October 19, 1999

Architecture Description Languages
■ Architectural models as distinct software artifacts

❏ communication
❏ analysis
❏ simulation / system generation
❏ evolution

■ Informal vs. formal models

■ General-purpose vs. special-purpose languages

■ Several prototype ADLs have been developed
❏ Darwin
❏ LILEANNA
❏ MetaH
❏ Rapide

❏ SADL
❏ UniCon
❏ Wright

❏ ACME
❏ Aesop
❏ ArTek
❏ C2

Software Architectures

ICS 221 October 19, 1999

ADL Definition
■ An ADL is a language that provides features for modeling

a software system’s conceptual architecture.

■ Essential features: explicit specification of
❏ components

❏ component interfaces
❏ connectors
❏ configurations

■ Desirable features
❏ specific aspects of components, connectors, and

configurations
❏ tool support

Software Architectures

ICS 221 October 19, 1999

Classifying Existing Notations
■ Approaches to modeling configurations

❏ implicit configuration
❏ in-line configuration
❏ explicit configuration

■ Associating architecture with implementation
❏ implementation constraining
❏ implementation independent

Software Architectures

ICS 221 October 19, 1999

Related Notations
■ High-level design notations

❏ e.g., LILEANNA, ArTek

■ Module interconnection languages
❏ e.g., MIL

■ Object-oriented notations
❏ e.g., Booch diagrams, UML

■ Programming languages
❏ e.g., Ada, Java

■ Formal specification languages
❏ e.g., Z, Obj, CHAM

Software Architectures

ICS 221 October 19, 1999

Analysis
■ Principal Problems

❏ Evaluate system properties upstream to reduce number and
cost of errors

■ Desired Solutions
❏ Static analysis

❏ internal consistency

❏ concurrent and distributed properties

❏ design heuristics and style rules
❏ Dynamic analysis

❏ testing and debugging

❏ assertion checking

❏ runtime properties

❏ Predictive performance

Software Architectures

ICS 221 October 19, 1999

Refinement
■ Principal Problems

❏ Bridge the gap between architecture descriptions and
programming languages

■ Desired Solutions
❏ Specify architectures at different abstraction levels
❏ Correct and consistent refinement across levels

Software Architectures

ICS 221 October 19, 1999

Traceability
■ Principal Problems

❏ Multiple abstraction levels + multiple perspectives

■ Desired Solutions
❏ Traceability across architectural cross-sections

Software Architectures

ICS 221 October 19, 1999

Design Process Support
■ Principal Problems

❏ Decompose large, distributed, heterogeneous systems

■ Desired Solutions
❏ Multiple perspectives
❏ Design guidance and rationale

Software Architectures

ICS 221 October 19, 1999

Origins: Where do Architectures
Come From?

■ Theft, method, or intuition?

■ Krutchen’s view: scenario-driven, iterative design

■ Recovery

■ DSSA approach: domain model, reference requirements,
and reference architecture (reflecting experience)

Software Architectures

ICS 221 October 19, 1999

Kruchten’s Views
■ 5 views of architectures

❏ conceptual
❏ “the object model of the design”

❏ dynamic
❏ concurrency and synchronization aspects

❏ physical
❏ mapping of software onto hardware

❏ static
❏ organization of software in the development

environment

❏ scenarios

Software Architectures

ICS 221 October 19, 1999

The “4+1” View Model

Conceptual
View

Dynamic
View

Static
View

Physical
View

Scenarios

Software Architectures

ICS 221 October 19, 1999

Scenario-Driven Iterative Approach
■ Prototype, test, measure, analyze, and refine the

architecture in subsequent iterations

■ Summary of the Approach:
❏ choose scenarios and identify major abstractions
❏ map the abstractions to the 4 blueprints
❏ implement, test, measure, and analyze the architecture
❏ select additional scenarios and reassess the risks
❏ fit new scenarios into the original architecture and update

blueprints
❏ measure under load, in real target environment
❏ review all 5 blueprints to detect potential for simplification

and reuse
❏ update rationale

Software Architectures

ICS 221 October 19, 1999

Architecture Recovery Process
■ The models are suggestive of a recovery process

❏ create a configuration model
❏ determine the types of the components and connectors
❏ determine the patterns of interactions among the

components
❏ abstract the properties of and relationships among the

components and connectors
❏ abstract useful styles

Software Architectures

ICS 221 October 19, 1999

The DSSA Insight
■ Reuse in particular domains is the most realistic

approach to reuse
❏ reuse in general is too difficult to achieve
❏ therefore focus on classes of applications with similar

characteristics

■ Software architectures provide a framework for reuse

Software Architectures

ICS 221 October 19, 1999

Domain-Specific Software Architectures

■ DSSA is an assemblage of software components
❏ specialized for a particular type of task (domain)
❏ generalized for effective use across that domain
❏ composed in a standardized structure (topology) effective for

building successful applications
- Rick Hayes-Roth, Teknowledge, 1994

■ DSSA is comprised of
❏ a domain model,
❏ reference requirements,
❏ a reference (parameterized) architecture (expressed in an

ADL),
❏ its supporting infrastructure/environment, and
❏ a process/methodology to instantiate/refine and evaluate it.

- Will Tracz, Loral, 1995

Software Architectures

ICS 221 October 19, 1999

What Is a Domain Model?

■ A domain model is a representation of
❏ functions being performed in a domain
❏ data, information, and entities flowing among the functions

■ It deals with the problem space

■ Domain model is a product of domain analysis

❏ “it is like several blind men describing an elephant”

■ Fundamental objectives of domain analysis:
❏ standardize domain terminology and semantics
❏ provide basis for standardized descriptions of specific

problems to be solved in the domain

■ Domain model elements
❏ customer needs statement, scenarios, domain dictionary,

context and ER diagrams, data-flow, state-transition, and
object models

Software Architectures

ICS 221 October 19, 1999

What Are Reference Requirements?
■ Requirements that apply to the entire domain

■ Reference requirements contain
❏ defining characteristics of the problem space

❏ functional requirements
❏ limiting characteristics (constraints) in the solution space

❏ non-functional requirements (e.g., security,
performance)

❏ design requirements (e.g., architectural style, UI style)

❏ implementation requirements (e.g., platform, language)

Software Architectures

ICS 221 October 19, 1999

What Is a Reference Architecture?
■ Standardized, generic architecture(s) describing all

systems in a domain

■ Based on the constraints in reference requirements

■ Specifies syntax and semantics of high-level components

■ It is reusable, extendable, and configurable

■ Instantiated to create a specific application’s architecture

■ Reference architecture elements
❏ model (topology), configuration decision tree, architecture

schema (design record), dependency diagram, component
interface descriptions, constraints, rationale

Software Architectures

ICS 221 October 19, 1999

A Simplified DSSA Process with Principal Supporting Tool Types

Application
Requirements

Analysis

Application
Design &

Development

Application
Requirements

Domain
Model:

Context
+

Reference
Requirements

Reference
Architecture

Test &
Validation
System

Application
System:

Architecture
+

Components
+

Platform Specs

Requirements
Management ToolsModeling

Tools Architecture
Specification

Tools

Architecture
Refinement

&
Evolution

Tools
Repository

Tools

Component
Selection Tools

Component
Generators

Configuration
Package, Load,

and Exercise Tools

Requirements
Validation Tools

Performance
Validation Tools

Software Architectures

ICS 221 October 19, 1999

Another Simplified View of the DSSA Process

Reference
Architecture

Application
Architecture Implementation

Software Architectures

ICS 221 October 19, 1999

Software Architectures

ICS 221 October 19, 1999

Organizational Considerations
■ Architecture/Asset base

❏ across product lines
❏ product line specific
❏ product specific

■ Supporting technology
❏ global to the company
❏ Processes - support multiple product lines

Software Architectures

ICS 221 October 19, 1999

Architectural Style
■ Garlan:

❏ Architectural styles are recurring organizational patterns and
idioms.

■ Medvidovic, Oreizy, Robbins, Taylor:
❏ Architectural style is an abstraction of recurring composition

and communication characteristics of a set of architectures.
❏ Styles are key design idioms that enable exploitation of

suitable structural and evolution patterns and facilitate
component and process reuse.

Software Architectures

ICS 221 October 19, 1999

Benefits of Styles (1)
■ Design Reuse

❏ solutions with well-understood properties can be reapplied to
new problems

■ Code Reuse
❏ invariant aspects of a style lend themselves to shared

implementations

■ Understandability of system organization
❏ just knowing that something is a “client-server” architecture

conveys a lot of information

Software Architectures

ICS 221 October 19, 1999

Benefits of Styles (2)
■ Interoperability

❏ supported by style standardization (e.g., CORBA,
SoftBench)

■ Style-specific analyses
❏ constrained design space
❏ some analyses not possible on ad-hoc architectures or

architectures in certain styles

■ Visualizations
❏ style-specific depictions that match engineers’ mental

models

Software Architectures

ICS 221 October 19, 1999

Basic Properties of Styles
■ They provide a vocabulary of design elements

❏ component and connector types (e.g., pipes, filters,
servers...)

■ They define a set of configuration rules

❏ topological constraints that determine permitted composition
of elements

■ They define a semantic interpretation

❏ compositions of design elements have well-defined
meanings

■ They define analyses that can be performed on systems
built in the style

❏ code generation is a special kind of analysis

Software Architectures

ICS 221 October 19, 1999

Three Views of Architectural Style
Language System of Types Theory

Vocabulary

a set of grammatical
productions

a set of types; in OO,
sub- and super-types
possible;

represented indi-
rectly, in terms of
elements’ logical
properties

Configuration
Rules

context-free and
-sensitive grammar
rules

maintained as type
invariants

defined as further
axioms

Semantic
Interpretations

standard techniques
for assigning mean-
ing to languages

operationally real-
ized in the code that
modifies type
instances

defined as further
axioms

Analyses

performed on archi-
tectural “programs”
(compilation, flow)

dependent on types
involved (type
checking, code gen-
eration)

by proving theo-
rems, thereby
extending the theory
of the style

Software Architectures

ICS 221 October 19, 1999

Comparisons of Style Views
Language System of Types Theory

Representation
of Structure

explicit (language
expression or
abstract syntax tree)

explicit (intercon-
nected collection of
objects)

implicit (set of asser-
tions)

Substyles
no way to define
them

new style types are
subtypes of super-
style (e.g., Aesop)

defined in terms of
theory inclusion

Refinement
not handled not handled natural for defining

inter-layer abstrac-
tion mappings

Automated
Support

programming lan-
guage tools, e.g.,
type checkers, code
generators, etc.

OO databases and
tools for storing,
visualizing, and
manipulating
designs

formal manipulation
systems, e.g., theo-
rem provers and
model checkers

Software Architectures

ICS 221 October 19, 1999

Overview of the C2 Style

■ A component- and message-based style

■ C2 architectures are networks of concurrent components
hooked together by connectors

C4C3

C2

C1

■ no component-to-component
links

■ “one up, one down” rule for
components

■ connector-to-connector links are
allowed

■ “many up, many down” rule for
connectors

■ all communication by
exchanging messages

■ substrate independence

Software Architectures

ICS 221 October 19, 1999

Internal Architecture of a C2 Component

Internal

Object

Wrapper

Dialog
&

Constraints

Domain
Translator

Software Architectures

ICS 221 October 19, 1999

Example C2-Style Architecture
Clock
Logic

Status
Logic

Tile
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT

Manager
Layout

Manager

Software Architectures

ICS 221 October 19, 1999

Architectural Evolution
■ Principal Problems

❏ Evolution of design elements
❏ Evolution of system families

■ Desired Solutions
❏ Specification-time evolution

❏ subtyping

❏ incremental specification

❏ system families
❏ Execution-time evolution

❏ replication, insertion, removal, and reconnection

❏ planned or unplanned

❏ constraint satisfaction

Software Architectures

ICS 221 October 19, 1999

Execution-Time Evolution
■ The role of architectures at run-time

■ The special role of connectors

■ The C2 project

Software Architectures

ICS 221 October 19, 1999

