
University of California, Irvine

ICS 52: Introduction to Software
Engineering

Fall Quarter 2004
Professor Richard N. Taylor

Lecture Notes
Week 4 Design

http://www.ics.uci.edu/~taylor/ICS_52_FQ04/syllabus.html
Copyright 2004, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine

Today’s Lecture

Architectural design revisited
Modules
Interfaces

University of California, Irvine

Design

 Architectural design
– High-level partitioning of a software system into

separate modules (components)
– Focus on the interactions among parts (connections)
– Focus on structural properties (architecture)

» “How does it all fit together?”
 Module design

– Detailed design of a component
– Focus on the internals of a component
– Focus on computational properties

» “How does it work?”

University of California, Irvine

Architectural Design
A simple diagram is not enough

– It is only a start
Additional decisions need to be made

– Define the primary purpose of each component
– Define the interface of each component

» Primary methods of access/use
» As complete as possible

Always requires multiple iterations
– Cannot do it right in one shot
– Use the fundamental principles

University of California, Irvine

A Good Design…

…is half the implementation effort (at least)!
– Rigor ensures all requirements are addressed
– Separation of concerns

» Modularity allows work in isolation because components are
independent of each other

» Abstraction allows work in isolation because interfaces
guarantee that components will work together

– Anticipation of change allows changes to be absorbed
seamlessly

– Generality allows components to be reused throughout
the system

– Incrementality allows the software to be developed
with intermediate working results

University of California, Irvine

A Bad Design…

…will never be implemented!
– Lack of rigor leads to missing functionality
– Separation of concerns

» Lack of modularity leads to conflicts among developers
» Lack of abstraction leads to massive integration problems (and

headaches)
– Lack of anticipation of change leads to redesigns and

reimplementations
– Lack of generality leads to “code bloat”
– Lack of incrementality leads to a big-bang approach

that is likely to “bomb”

University of California, Irvine

Design Interaction

Architectural design
(previous lecture)

Module design
(this lecture)

University of California, Irvine

From Architecture to Modules
 Repeat the design process

– Design the internal architecture of a component
» (Break it apart into several modules, and articulate their interconnections and

dependencies)
– Define the purpose of each module
– Define the provided interface of each module
– Define the required interface of each module

 Do this over and over again
– Until each module has…

» …a simple, well-defined internal architecture
» …a simple, well-defined purpose
» …a simple, well-defined provided interface
» …a simple, well-defined required interface

 Until all modules “hook up”

University of California, Irvine

But What About Those Interfaces?

Provided Interface

Peer
Required Interface

Provided Interface

Peer
Required Interface

Provided Interface

Client
Required Interface

Provided Interface

Client
Required Interface

Provided Interface

Client
Required Interface

Provided Interface

Server
Required Interface

Provided Interface

Layer 1
Required Interface

Provided Interface

Layer 2
Required Interface

Provided Interface

Layer 3
Required Interface

Provided Interface

Layer 4
Required Interface

University of California, Irvine

Interfaces

 Abstraction of the functionality of a component
– Defines the set of services that a component provides or requires
– Other components use or supply these services
– Components themselves implement the services

» Perhaps with the help of other components
 Serves as a contract

– Other components rely on the contract
– Any change can have far-reaching consequences

Interfaces are the key to proper design

University of California, Irvine

Example: Network Protocols (1)

boolean sendSmallPacket(Packet p)

boolean sendReliableSmallPacket(Packet p)

boolean sendReliableBigPacket(Packet p)

Result callRemoteFunction(Function f)
Provided Interface

RPC
Required Interface

Provided Interface

Big & Reliable
Required Interface

Provided Interface

Reliable
Required Interface

Provided Interface

Small
Required Interface

University of California, Irvine

Provided Interface

RPC
Required Interface

Provided Interface

Big & Reliable
Required Interface

Provided Interface

Reliable
Required Interface

Provided Interface

Small
Required Interface

Example: Network Protocols (2)

boolean receiveSmallPacket(Packet)

boolean receiveReliableSmallPacket(Packet)

boolean receiveReliableBigPacket(Packet)

Result RemoteFunction(Function f)

University of California, Irvine

Provided Interface

Broker
Required Interface

Provided Interface

Broker
Required Interface

Provided Interface

NASDAQ
Required Interface

Provided Interface

Bus
Required Interface

Example: Stock Market

boolean BroadcastEvent(Event e)
void registerInterest(EventType et)

Event receiveEvent()

Provided Interface

Broker
Required Interface

University of California, Irvine

Interfaces and Fundamental Principles

Interfaces are rigorously and formally defined
Interfaces separate concerns

–Interfaces modularize a system
–Interfaces abstract implementation details

»With respect to what is provided
»With respect to what is required

(Good) Interfaces anticipate change

University of California, Irvine

Tools of the Trade
 Apply information hiding

– “Secrets should be kept from other modules”
– Abstract data types

 Use requirements specification
– Objects, entities, relationships, algorithms

 Determine usage patterns
 Anticipate change
 Design for generality and incrementality

– Reuse
 Design for program families

University of California, Irvine

Apply Information Hiding

One module “hides secret information” from other
modules
– Data representations
– Algorithms
– Sequencing of processing

Why?
– To create a clean separation of concerns

University of California, Irvine

Abstract Data Types
 Goal: Encapsulate the concrete representation of a data structure will all

functions that access the representation
 Users see only the abstract characteristics of the structure
 Access to the structure is only through the provided access functions
 No extraneous functions included
 Notes

– Abstract does not mean ``vague''
– Abstract does not mean highly mathematical
– Abstract means conceived apart from special cases or instances
– Abstract implies a many-to-one mapping that models some aspects of an

entity, but not all

University of California, Irvine

Specification and Implementation of ADTs
 Specification of an Abstract Data Type

– Domain: the types(s) of the functions
» one domain/type is being defined; the others are assumed to be known
» objects may have structure, but aspects of the structure are only observable as

functions are applied
– Access Functions (semantics)

» Primitive constructors
» Combinational constructors
» Query functions

– Exceptions
 Implementation of ADTs

– Internal objects
– Internal functions
– Internal errors and error handling

 Examples: Stacks and queues; date packages

University of California, Irvine

Rational Numbers Package: Definition (Ada)
package rational_numbers is

type rational is limited private;
function "=" (x,y: rational) return boolean;
function "+" (x,y: rational) return rational;
function "-" (x,y: rational) return rational;
function "*" (x,y: rational) return rational;

function "/" (x,y: rational) return rational;
function "/" (x,y: integer) return rational;

procedure assign (x: out rational; y: rational);
zero_denominator: exception;

private
-- some information for the compiler

end;

University of California, Irvine

Rational Numbers: Use
with rational_numbers;
declare

use rational_numbers;
x, y, z: rational;

begin
assign (x,3/4);
assign (y, 6/8);
if x=y then put ("equal");
 else put ("not equal");
end if;
assign (z, x*y);

end;

University of California, Irvine

Rational Numbers: Implementation
private

type rational is
record

numerator: integer;
denominator: integer range 1..integer'last;

end record;
package body rational_numbers is

procedure same_denominator (x,y: in out rational) is
begin
-- changes x and y to have the same denominator
end;

function "=" (x,y: rational) return boolean is
u,v: rational:
begin

u := x;
v := y;
same_denominator (u,v);
return (u.numerator = v.numerator);

end "=";
 function "/" (x,y: integer) return rational is

 begin
 return (x,y);

 end "/";
 -- you can guess what +, -, * look like
 -- and of course the other "/" must be defined
end rational_numbers;

University of California, Irvine

Use Requirements Specification
 A requirements specification contains lots of useful information to be

leveraged during design
– Nouns: modules / classes (SOMETIMES!)
– Verbs: methods (SOMETIMES!)
– Adjectives: properties/attributes/member variables (SOMETIMES!)

 Why?
– To identify likely design elements

University of California, Irvine

Determine Usage Patterns
 Usage patterns are incredible sources of information

– Common tasks often can be placed into a single interface method
» Specific combinations of method invocations
» Specific iterations over a single method

– Some usage patterns require non-existing functions
 Why?

– To refine the interface of a module

University of California, Irvine

Anticipate Change

Wrap items likely to change within modules
– Design decisions
– Data representations
– Algorithms

Design module interfaces to be insensitive to change
– The changeable items go into the module itself

Why?
– To limit the effects of (un)anticipated system

modifications

University of California, Irvine

Design for Generality/Incrementality
 Design a module to be usable in more than one context

– Generalize the applicability of methods
» Do not just draw red squares
» Do not just stack integers

– Allow for the addition of extra methods
 Why?

– To increase reuse

University of California, Irvine

Design for Program Families
 A system is typically used in more than one setting

– Different countries
» Different languages
» Different customs
» Different currencies

– Different hardware/software platforms
 Why?

– To enhance applicability
– To keep your company in the black!

Special case of generality and incrementality at the system level

University of California, Irvine

From Architecture to Modules
 Repeat the design process

– Design the internal architecture of a component
– Define the purpose of each module
– Define the provided interface of each module
– Define the required interface of each module

 Do this over and over again
– Until each module has…

» …a simple, well-defined internal architecture
» …a simple, well-defined purpose
» …a simple, well-defined provided interface
» …a simple, well-defined required interface

 Until all interfaces “hook up”

University of California, Irvine

Good Examples of Modules

 Java 1.3 collection classes
 Standard template library for C++

University of California, Irvine

Next Topics
 USES relation
 IS-COMPOSED-OF relation
 COMPRISES diagram
 USES diagram
 [Stepwise refinement]

University of California, Irvine

In Design, We Can Do Anything…

Provided Interface

Big Component
Required Interface

Provided Interface

Tiny Component
Required Interface

Provided Interface

B Component
Required Interface

Provided Interface

Mr. Component
Required Interface

Provided Interface

A Component
Required Interface

Provided Interface

Yet Component
Required Interface

Provided Interface

Some Component
Required Interface

Provided Interface

One Component
Required Interface

Provided Interface

Mrs. Component
Required Interface

University of California, Irvine

…Even when Restricted by Style

What happened here?

Provided Interface

Layer 4
Required Interface

Provided Interface

Layer 3
Required Interface

Provided Interface

Layer 2
Required Interface

Provided Interface

Layer 1
Required Interface

University of California, Irvine

Fan-in and Fan-out

High fan-in

Low fan-out

Low fan-in

High fan-out

USUALLY GOOD! USUALLY BAD!

Provided Interface

Component
Required Interface

Provided Interface

Component
Required Interface

University of California, Irvine

The Uses Relation
 A useful concept for examining a set of modules w.r.t. flexibility, reuse, and

incremental testability
 Definition: Mi uses Mj if an only if correct execution of Mj is necessary for Mi

to complete the task described in its specification.
 Note: uses is not the same as invokes:

– Some invocations are not uses
» they are just transfers of control

– Some uses don't involve invocations
» interrupt handlers
» shared memory (gag!)

University of California, Irvine

USES Relation
 Definition

– Level 0: those modules that do not use any other modules
– Level i: those modules that use at least one module at level i – 1 and use

no modules at level i or greater
 Use

– Determine flexibility
– Determine reuse
– Determine incremental testability

University of California, Irvine

Example

Level 2

Level 1

Level 0

Level 0

Provided Interface

Big Component
Required Interface

Provided Interface

A Component
Required Interface

Provided Interface

Tiny Component
Required Interface

Provided Interface

Yet Component
Required Interface

University of California, Irvine

Observations
 The USES relation does not necessarily form a hierarchy

– An acyclic directed graph is good
– Cycles generally are bad

» Indication of high coupling
» Indication of broken separation of concerns

 Rules of thumb: allow a to use b…
– …if it makes a simpler
– …if b is not only used by a but also by other components

University of California, Irvine

Observations
 Some invocations are not USES

– Consider a transfer of control
– Consider a scheduler inside a program

 Some USES do not involve invocations
– Consider interrupt handlers
– Consider global variables
– Consider a blackboard

University of California, Irvine

IS-COMPONENT-OF Relation
 Definition

– Module Mi IS-COMPONENT-OF module M if M is realized by
aggregating several modules, one of which is Mi

– The combined set of all modules that exhibit the IS-COMPONENT-OF
relation with respect to module M are said to implement module M

 Use
– Determine hierarchical decomposition of a component in its

subcomponents
– Abstract details

University of California, Irvine

Example

Compressor IS-COMPONENT-OF Audio Encoder
Encoder IS-COMPONENT-OF Audio Encoder
Reader IS-COMPONENT-OF Audio Encoder

Compressor, Encoder, and Reader IMPLEMENT Audio Encoder
Audio Encoder IS-COMPOSED-OF Compressor, Encoder, and Reader

Provided Interface

Audio Encoder
Required Interface

Co
m

pr
es

so
r

Provided Interface

En
co

de
r

R
ea

de
r

University of California, Irvine

Comprises Diagram

Provided Interface

Yet Component
Required Interface

Provided Interface

Tiny Component
Required Interface

Provided Interface

B Component
Required Interface

Provided Interface

Mr. Component
Required Interface

Provided Interface

Required Interface

Provided Interface

Big Component
Required Interface

Provided Interface

A Component
Required Interface

Required Interface

Provided Interface

Provided Interface

Required Interface

Bla Component

Duh Component

Doh Component

University of California, Irvine

USES Diagram – Step 1

Provided Interface

Yet Component
Required Interface

Provided Interface

Tiny Component
Required Interface

Provided Interface

B Component
Required Interface

Provided Interface

Mr. Component
Required Interface

Provided Interface

Required Interface

Provided Interface

Big Component
Required Interface

Provided Interface

A Component
Required Interface

Required Interface

Provided Interface

Duh Component

Doh Component

University of California, Irvine

USES Diagram – Step 2

Provided Interface

Yet Component
Required Interface

Provided Interface

Tiny Component
Required Interface

Provided Interface

B Component
Required Interface

Provided Interface

Mr. Component
Required Interface

Provided Interface

Big Component
Required Interface

Provided Interface

A Component
Required Interface

University of California, Irvine

USES Diagram – Step 3

Provided Interface

Yet Component
Required Interface

Provided Interface

Tiny Component
Required Interface

Provided Interface

B Component
Required Interface

Provided Interface

Mr. Component
Required Interface

Provided Interface

Big Component
Required Interface

Provided Interface

A Component
Required Interface

This is tricky!

University of California, Irvine

USES Diagram – Step 4

Provided Interface

Yet Component
Required Interface

Provided Interface

Tiny Component
Required Interface

Provided Interface

B Component
Required Interface

Provided Interface

Mr. Component
Required Interface

Provided Interface

Big Component
Required Interface

Provided Interface

A Component
Required Interface

2

3

2

1

1

0

University of California, Irvine

Observations
 Why do we identify higher-level modules in the first place?

– Understanding
– Abstraction through composition

 IS-COMPONENT-OF is not
– is-attribute-of
– is-inside-of-on-the-screen
– is-subclass-of
– is-accessed-through-the-menu-of

University of California, Irvine

The Design Process

 Repeat the design process
– Design the internal architecture of a component
– Define the purpose of each module
– Define the provided interface of each module
– Define the required interface of each module

 Do this over and over again
– Until each module has…

» …a simple, well-defined internal architecture
» …a simple, well-defined purpose
» …a simple, well-defined provided interface
» …a simple, well-defined required interface

 Until all modules “hook up”

University of California, Irvine

Techniques to Use
 Tools of the trade

– Apply information hiding
– Use requirements specification
– Determine usage patterns
– Anticipate change
– Design for generality/incrementality
– Design for program families

 Strive for
– Low coupling/high cohesion
– A clean IS-COMPOSED-OF structure
– A clean USES structure

University of California, Irvine

Low-Coupling/High-Cohesion
 Cohesion measures the rate of interconnectedness within a module.
 Coupling measures the rate of interconnectedness among modules.

 Shows critical issues:
– a rate, rather than an absolute number (we like percentages)
– what it measures: interconnectedness (how well it all hangs together)
– within or among a module

