
NOTE: I will not be
signing ANY add cards

today
But I would be happy to sign drop cards immediately.

I will discuss the Add policy in a few minutes

University of California, Irvine

ICS 52: Introduction to Software
Engineering

Winter Quarter 2004
Professor Richard N. Taylor

Lecture Notes

http://www.ics.uci.edu/~taylor/ICS_52_FQ04/syllabus.html

Copyright 2004, Richard N. Taylor. Duplication of course
material for any commercial purpose without written permission is prohibited.

University of California, Irvine

Add/Drop Policy
 Second week of classes

– Deadline to add
– But most likely everything will be locked up by the beginning of the

second week

 Second week of classes
– Deadline to drop

University of California, Irvine

Course Web Site
http://www.ics.uci.edu/~taylor/ICS_52_FQ04/syllabus.html

 Contents
– Information on the instructor, TA, and readers
– Overview and prerequisite knowledge
– Textbook

» Sommerville
» Backup: Ghezzi, Jazayeri, and Mandrioli

– Schedule
– Assignments and assessment
– Keeping in touch
– Computing
– Academic dishonesty

University of California, Irvine

Be Involved…But Don’t Be Too Involved
 You cheat, you fail!

– Final grade is “F”, irrespective of partial grades
– Project, midterm, final

 To avoid being a cheater
– Always do your work by yourself
– Do not borrow work
– Do not lend work

» Do not put your work on the Web
 “Your TA is your friend, but your friend is not your TA”

– Your friend’s help may be cheating

University of California, Irvine

Discussion Section

Assignments: questions and answers
Details of tools and methods
No discussion section meetings until January

21st (I.e. at the time the first assignment is
issued)

University of California, Irvine

Positioning in ICS Curriculum
 ICS 121: Software methods and tools

– Rigor and formality
– Additional software design strategies
– Additional analysis and testing strategies
– Configuration management

 ICS 122: Software Specification and Quality Engineering
 ICS 123: Software Architectures, Distributed Systems, and Interoperability
 ICS 125

– Management issues
– Working in a team
– A scaled-up project

University of California, Irvine

A note on class attendance and the book…

What I say in class takes precedence over
what’s in the slides and what’s in the book

What’s in the slides takes precedence over
what’s in the book

University of California, Irvine

Levels of Mastery

 Competency
– Software lifecycle
– Requirements specification
– Architectural design
– Module design
– (Programming)
– Testing and quality assurance

 Literacy
– SE principles
– Alternative software architectures
– Requirements engineering issues

 Familiarity
– Configuration management
– Concurrency
– Software process alternatives

–"Scratching the surface of
software engineering"
–" Fitting you to become an
amateur software engineer"

(See course website for definitive list)

University of California, Irvine

Introduction

Context
Matters of scale
Distribution of software costs
Differences from programming
Product and process
Elements of Science, Engineering, Management,

and Human Factors

University of California, Irvine

Software Engineering

“A discipline that deals with the building of
software systems which are so large that
they are built by a team or teams of
engineers.” [Ghezzi, Jazayeri, Mandrioli]

“Multi-person construction of multi-version
software.” [Parnas]

University of California, Irvine

Software Engineering

“A discipline whose aim is the production of
fault-free software, delivered on-time and
within budget, that satisfies the user’s
needs. Furthermore, the software must be
easy to modify when the user’s needs
change.” [Schach]

“Difficult.” [van der Hoek]

University of California, Irvine

Software Engineering

“It’s where you actually get to design
big stuff and be creative.” [Taylor]

University of California, Irvine

Context

Programming Engineering

Huge project
Teams

Build what they want
Family of products

Many parallel changes
Long-lived

Costly
Large consequences

Small project
You
Build what you want
One product
Few sequential changes
Short-lived
Cheap
Small consequences

University of California, Irvine

Differences from Programming

Software engineering includes, e.g..:
–organizing teams to cooperatively build
systems

–determining what to build
–software architecture
–analysis and testing
–lifecycle system engineering

University of California, Irvine

Matters of Scale

 High powered techniques not appropriate for all problems (Using a forklift to carry a
paperback novel)

 The ICS 52 pedagogical problem:
– the problem must be small enough to complete in 10 weeks
– you work on the project by yourself
– you don't have to live with the consequences of your decisions
– your customers are too reasonable

University of California, Irvine

People
 The single most important factor in the success/failure of a product
 Scarce resource

– Quality
– Suitability
– Cost

 Many different kinds of people
– Managers
– Programmers
– Technical writers

Not the focus of ICS 52: see ICS 131

University of California, Irvine

Processes
 Essential to achieve a quality product
 Scarce resource

– Quality
– Suitability
– Cost

 Many different kinds of processes
– Bug tracking
– Change approval
– Quality assurance

Focus of ICS 52

University of California, Irvine

Tools

Needed to support people and processes
Scarce resource

– Quality
– Suitability
– Cost

Many different kinds of tools
– Drawing
– Analysis
– Project management
– Source code management

Not the focus of ICS 52: see ICS 121

people support

process support

University of California, Irvine

 Result of applying people, processes, and tools
 Consists of many deliverables

– Software
– Documentation
– User manuals
– Test cases
– Design documents

 Intrinsic qualities
– Safety
– Reliability
– User friendliness

Product

People + Processes + Tools = Product

University of California, Irvine

People, Processes, Tools, Products
 Products are always the eventual goal

– Selling products creates revenue
– Selling good products creates lots of revenue
– Selling bad products creates little revenue

 People, processes, and tools are retained by organization
– Build a reputation through the quality of products
– Create organizational culture
– Important to keep the team intact

University of California, Irvine

Product and Process

Which is the more important corporate asset:
products or development processes?
–Products: the only thing that brings in revenue
–Process: the only thing you retain

»The asset that distinguishes you from your
competitor en route to a product

»The asset that gets you to your next product
»The asset that determines key properties of your

products

University of California, Irvine

Science,
Engineering, Management, Human Factors

Science: empirical studies; theories characterizing
aggregate system behavior (e.g. reliability)

Management: organizing teams, directing activities,
correcting problems

Human factors: user task understanding and modeling;
ergonomics in user interface design

Engineering: tradeoffs, canonical solutions to typical
problems
– Tradeoffs and representative qualities

» Pick any two:
Good, fast, cheap
Scalability, functionality, performance

University of California, Irvine

Software Development
as a Problem Solving Activity

 Problem (application) characteristics
– Ill-formed
– Not completely specifiable?
– Subject to constant change

 Learning from other disciplines
– Architecture: Requirements,

sketch, blueprints, construction
» Strengths:

 Phasing of activities
 User input and review
 User looks at sketch, but only

minimally involved in construction
» Weaknesses:

 Lots of domain knowledge on the
part of the consumer

 We know what kind of change can
be made at each stage

 Progress easily measurable

– Legislation: Commission,
committee, congress,
bureaucracy
» Strengths:

 Intangible product
 Unforeseen consequences
 Difficult to measure progress
 Laws get "patched"
 Importance of careful reviews

highlighted
» Weakness of analogy:

 Difficult to test laws
 Not a rigorous discipline

University of California, Irvine

Processes
 Institute processes through which software is engineered

– Cover all steps from initial idea and requirements to delivery,
maintenance, and final retirement

– Make sure we do the right things/things right
– Make sure we do not forget to do anything
– Different processes for different kinds of software

 Not a silver bullet [Brooks “No Silver Bullet”]
– Software is still intrinsically difficult to deal with
– Processes help, but cannot guarantee anything

Remember: People + Processes + Tools => Product

University of California, Irvine

Software Processes
 Elements

– Activities (“phases”)
– Artifacts

» Can include process specifications
– Resources

» People (their time and cost)
» Tools (their time and cost)

 Relationships between the elements
– precedence, requires, produces, refines to
– ...

 Constraints
– Time
– Cost
– Qualities (repeatable process?)

University of California, Irvine

Software Life Cycle Models
 Build-and-fix
 Waterfall
 Rapid prototyping
 Incremental
 Synchronize-and-stabilize
 Spiral

A software life cycle model is a high-level process

University of California, Irvine

Build-and-Fix

Build first
version

Modify until
client is satisfied

Operations mode

Retirement
Development
Maintenance

University of California, Irvine

Build-and-Fix

Build first
version

Modify until
client is satisfied

Operations mode

Retirement
Development
Maintenance

University of California, Irvine

Build-and-Fix

Build first
version

Modify until
client is satisfied

Operations mode

Retirement
Development
Maintenance

University of California, Irvine

Build-and-Fix

Build first
version

Modify until
client is satisfied

Operations mode

Retirement
Development
Maintenance

University of California, Irvine

Build-and-Fix

Build first
version

Modify until
client is satisfied

Operations mode

Retirement
Development
Maintenance

University of California, Irvine

Build-and-Fix

Build first
version

Modify until
client is satisfied

Operations mode

Retirement
Development
Maintenance

Waterfall
Approach

 Waterfall Model (Winston Royce)
– Centered on defining documents

that describe intermediate products
– User feedback and changes

accommodated as an afterthought

Source: Schach, ibid..

University of California, Irvine

Waterfall model

©Ian Sommerville 2000 Software Engineering, 6th editi

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Waterfall

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

Rapid Prototyping

Operations mode

Retirement

Build and discard
simple prototype

Verify

Specification
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Integration
phase
Test

Changed
requirements

Verify

Development
Maintenance

University of California, Irvine

FOR EACH BUILD
Perform detailed design,
implementation, and
integration. Test.
Deliver to client.

Incremental

Operations mode

Retirement

Requirements
phase
Verify

Specification
phase
Verify

Architectural
design
Verify

Development
Maintenance

University of California, Irvine

Synchronize-and-Stabilize

Specifications Implementation,
Integration

Deliver to
client (version 1)

Specifications Design Implementation,
Integration

Deliver to
client (version 2)

Specifications Design Implementation,
Integration

Deliver to
client (version 3)

Specifications Design Implementation,
Integration

Deliver to
client (version n)

...
...

...

Specification team Design team Implementation/integration team

Design

University of California, Irvine

Synchronize-and-Stabilize

Specifications Implementation,
Integration

Deliver to
client (version 1)

Specifications Design Implementation,
Integration

Deliver to
client (version 2)

Specifications Design Implementation,
Integration

Deliver to
client (version 3)

Specifications Design Implementation,
Integration

Deliver to
client (version n)

...
...

...

Specification team Design team Implementation/integration team

Design

University of California, Irvine

Synchronize-and-Stabilize

Specifications Implementation,
Integration

Deliver to
client (version 1)

Specifications Design Implementation,
Integration

Deliver to
client (version 2)

Specifications Design Implementation,
Integration

Deliver to
client (version 3)

Specifications Design Implementation,
Integration

Deliver to
client (version n)

...
...

...

Specification team Design team Implementation/integration team

Design

University of California, Irvine

Synchronize-and-Stabilize

Specifications Implementation,
Integration

Deliver to
client version 1

Specifications Design Implementation,
Integration

Deliver to
client version 2

Specifications Design Implementation,
Integration

Deliver to
client version 3

Specifications Design Implementation,
Integration

Deliver to
client version n

...
...

...

Specification team Design team Implementation/integration team

Design

University of California, Irvine

Synchronize-and-Stabilize

Specifications Implementation,
Integration

Deliver to
client version 1

Specifications Design Implementation,
Integration

Deliver to
client version 2

Specifications Design Implementation,
Integration

Deliver to
client version 3

Specifications Design Implementation,
Integration

Deliver to
client version n

...
...

...

Specification team Design team Implementation/integration team

Design

University of California, Irvine

Synchronize-and-Stabilize

Specifications Implementation,
Integration

Deliver to
client version 1

Specifications Design Implementation,
Integration

Deliver to
client version 2

Specifications Design Implementation,
Integration

Deliver to
client version 3

Specifications Design Implementation,
Integration

Deliver to
client version n

...
...

...

Specification team Design team Implementation/integration team

Design

University of California, Irvine

Lifecycle Models
 Waterfall Model (Winston Royce)

– Centered on defining documents
that describe intermediate products

– User feedback and changes
accommodated as an afterthought

 Spiral Model (Barry Boehm)
– Iterative development model
– Centered on risk analysis
– Directly includes prototyping and

user feedback

University of California, Irvine

Distribution of Software Costs

Slides: Stephen R. Schach, Software Engineering, 2nd Edition Aksen Associations

Start here

Spiral Model

Source: Barry Boehm, “A Spiral Model of Software Development and Enhancement, IEEE Computer, May 1988

 Spiral Model (Barry Boehm)
– Iterative development model
– Centered on risk analysis
– Directly includes prototyping and

user feedback

University of California, Irvine

Boehm’s Top Ten Software Risks
1. Personnel shortfalls
2. Unrealistic schedules and budgets
3. Developing the wrong software

functions
4. Developing the wrong user interface
5. “Gold plating”

6. Continuing stream of requirements
changes

7. Shortfalls in externally furnished
components

8. Shortfalls in externally performed
tasks

9. Real-time performance shortfalls
10. Straining computer-science

capabilities

University of California, Irvine

SEI's Capability Maturity Model

Initial(1)

Repeatable (2)
Software configuration management
Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management

Defined (3)
Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

Managed (4)
Software quality management
Quantitative process management

Optimizing (5)
Process change management
Technology change management
Defect prevention

Disciplined
Process

Standard, consistent process

Predictable process

Continuously improving process

University of California, Irvine

A Comparison of Life Cycle Models

WeaknessesStrengthsModel

Totally unsatisfactorily for nontrivial
programs

Fine for small programs that do not
require much maintenance

Build-and-Fix

Delivered product may not meet
client’s needs

Disciplined approach
Document driven

Waterfall

Can be used only for large-scale
products
Developers have to be competent at risk-
analysis

Incorporates features of all the above
models

Spiral

Has not been widely used other
than in Microsoft

Future user’s needs are met
Ensures components can be
successfully integrated

Synchronize-
and-stabilize

Requires open architecture
May degenerate into build-and-fix

Maximizes early return on investment
Promotes maintainability

Incremental

A need to build twice
Cannot always be used

Ensures that delivered product meets
client’s needs

Rapid
Prototyping

University of California, Irvine

ICS 52 Software Life Cycle

 Requirements specification
– Interview customer (TA)
– Focus on “what”, not “how”

 Architectural and module design
– Based on provided “official” requirements specification
– Focus on interfaces

 Implementation
– Based on provided “official” design
– Focus on good implementation techniques

 Testing
– Based on provided “official” implementation
– Focus on fault coverage and discovery

