
University of California, Irvine

ICS 52: Introduction to Software
Engineering

Winter Quarter 2004
Professor Richard N. Taylor

Lecture Notes
Week 2: Principles and Requirements Engineering

http://www.ics.uci.edu/~taylor/ICS_52_WQ04/syllabus.html
Copyright 2004, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine

Recurring, Fundamental Principles
 Rigor and formality
 Separation of concerns

– Modularity
– Abstraction

 Anticipation of change
 Generality
 Incrementality

These principles apply to all aspects of software engineering

University of California, Irvine

Rigor and Formality
 Creativity often leads to imprecision and inaccuracy

– Software development is a creative process
– Software development can tolerate neither imprecision nor inaccuracy

 Rigor helps to…
– …produce more reliable products
– …control cost
– …increase confidence in products

 Formality is “rigor -- mathematically sound”
– Often used for mission critical systems

University of California, Irvine

Separation of Concerns
 Trying to do too many things at the same time often leads to mistakes

– Software development is comprised of many parallel tasks, goals, and
responsibilities

– Software development cannot tolerate mistakes
 Separation of concerns helps to…

– …divide a problem into parts that can be dealt with separately
– …create an understanding of how the parts depend on/relate to each

other

University of California, Irvine

Example Dimensions of Separation
 Time

– Requirements, design, implementation, testing, …
– Dial, receive confirmation, connect, talk, …

 Qualities
– Efficiency and user friendliness
– Correctness and portability

 Views
– Data flow and control flow
– Management and development

University of California, Irvine

Modularity
 Separation into individual, physical parts

– Decomposability
» Divide and conquer

– Composability
» Component assembly
» Reuse

– Understanding
» Localization

 It is a particular type of separation of concerns
– Divide and conquer “horizontally”
– “Brick”-effect

University of California, Irvine

Modularity

Big

SmallSmall SmallSmall

University of California, Irvine

Abstraction
 Separation into individual, logical parts

– Relevant versus irrelevant details
» Use relevant details to solve task at hand
» Ignore irrelevant details

 Special case of separation of concerns
– Divide and conquer “vertically”
– “Iceberg”-effect

University of California, Irvine

Abstraction

Big

Abstraction

Details

University of California, Irvine

Anticipation of Change
 Not anticipating change often leads to high cost and unmanageable software

– Software development deals with inherently changing requirements
– Software development can tolerate neither high cost nor unmanageable

software
 Anticipation of change helps to…

– …create a software infrastructure that absorbs changes easily
– …enhance reusability of components
– …control cost in the long run

University of California, Irvine

Generality

 Not generalizing often leads to continuous redevelopment of similar
solutions
– Software development involves building many similar kinds of

software (components)
– Software development cannot tolerate building the same thing over

and over again
 Generality leads to…

– …increased reusability
– …increased reliability
– …faster development
– …reduced cost

University of California, Irvine

Incrementality
 Delivering a large product as a whole, and in one shot, often leads to

dissatisfaction and a product that is “not quite right”
– Software development typically delivers one final product
– Software development cannot tolerate a product that is not quite right or

dissatisfies the customer
 Incrementality leads to…

– …the development of better products
– …early identification of problems
– …an increase in customer satisfaction

» Active involvement of customer

University of California, Irvine

Cohesion

VERSUS

University of California, Irvine

Coupling

VERSUS

University of California, Irvine

Provided Interface

Implementation
Required Interface

A Good Separation of Concerns, 1

Abstraction through the use of provided/required interfaces
Modularity through the use of components
Low coupling through the use of hierarchies
High cohesion through the use of coherent implementations

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

University of California, Irvine

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

A Good Separation of Concerns, 2

Abstraction through the use of provided/required interfaces
Modularity through the use of components
Low coupling through the use of a central “blackboard”
High cohesion through the use of coherent implementations

Implementation

Provided Interface

University of California, Irvine

Benefit 1: Anticipating Change

Separating concerns anticipates change

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Implementation

Provided Interface

University of California, Irvine

Benefit 1: Anticipating Change

Separating concerns anticipates change

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Implementation

Provided Interface

University of California, Irvine

Benefit 2: Promoting Generality

Separating concerns promotes generality

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

University of California, Irvine

Benefit 3: Facilitating Incrementality

Separating concerns facilitates incrementality

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Implementation

Provided Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

University of California, Irvine

Recurring, Fundamental Principles
 Rigor and formality
 Separation of concerns

– Modularity
– Abstraction

 Anticipation of change
 Generality
 Incrementality

These principles apply to all aspects of software engineering

University of California, Irvine

ICS 52 Life Cycle
Requirements

phase
Verify

Design
phase
Verify

Implementation
phase
Test

Testing
phase
Verify

University of California, Irvine

Requirements Phase

Terminology
–Requirements analysis/engineering

»Activity of unearthing a customer’s needs
–Requirements specification

»Document describing a customer’s needs

University of California, Irvine

Requirements Analysis
 System engineering versus software engineering

– What role does software play within the full solution?
– Trend: software is everywhere

 Contract model versus participatory design
– Contract: carefully specify requirements, then contract out the

development
– Participatory: customers, users, and software development staff work

together throughout the life cycle

University of California, Irvine

Techniques for Requirements Analysis
 Interview customer
 Create use cases/scenarios
 Prototype solutions
 Observe customer
 Identify important objects/roles/functions
 Perform research
 Construct glossaries

Use the principles

University of California, Irvine

Requirements Specification
 Serves as the fundamental reference point between customer and software

producer
 Defines capabilities to be provided without saying how they should be

provided
– Defines the “what”
– Does not define the “how”

 Defines environmental requirements on the software to guide the
implementers
– Platforms
– Implementation language(s)

 Defines software qualities

University of California, Irvine

Requirements Specification (the Document)
 Purpose

– Serve as the fundamental reference point between builder and buyer/"consumer "
(contract)

– Define capabilities to be provided, without saying how they should be provided
– Define constraints on the software

» e.g. performance, platforms, language
 Characteristics

– Unambiguous
» Requires precise, well-defined notations

– Complete: any system that satisfies it is acceptable
– Consistent

» There should be no conflicts or contradictions in the descriptions of the system facilities
– Verifiable (testable)
– No implementation bias (external properties only)

» "One model, many realizations"

Users of a
requirements
document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5

University of California, Irvine

Lifecycle Considerations

 Serve as basis for future contracts
 Reduce future modification costs

– Identify items likely to change
– Identify fundamental assumptions

 Structure document to make future changes easy
– e.g. have a single location where all concepts are defined

University of California, Irvine

Recurring, Fundamental Principles
 Rigor and formality
 Separation of concerns

– Modularity
– Abstraction

 Anticipation of change
 Generality
 Incrementality

These principles apply to all aspects of software engineering

University of California, Irvine

Requirements Volatility

Source: David Alex Lamb, Software Engineering, Planning for Change
Prentice Hall, 1988

University of California, Irvine

Structure of a Requirements Specification
 Introduction
 Executive summary
 Application context
 Functional requirements
 Environmental requirements
 Software qualities
 Other requirements
 Time schedule
 Potential risks
 Future changes
 Glossary
 Reference documents

University of California, Irvine

Content of a Requirements Specification
 Application context

– Describe the situations in which the software will be used. How will the
situation change as a result of introducing the software system?

– Identify all things (objects, processes, other software, hardware, people)
that the system may, or will, affect.

– Develop an abstraction for each of those things, characterizing their
properties/behavior which are relevant to the software system. ("World
model.")

– How might this context change?
 Functional requirements ("features")

– Identify all concepts (objects) that the system provides to the users.
– Develop an abstraction for each of those concepts, characterizing their

properties and functions which are relevant to the user.
» What is the system supposed to do?
» What is supposed to happen when something goes wrong?

University of California, Irvine

Contents of a
Requirements Specification, cont..

Performance requirements: speed, space

Environmental requirements: platform, language, ...

Subsets/supersets

Expected changes and fundamental assumptions

Definitions; reference documents

University of California, Irvine

Non-functional requirement types

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5

University of California, Irvine

World Model (OOA) versus Simple Input/Output
Characterizations as Reqt.s Specs

 The application context may change because of extrinsic factors
 The software system modifies the usage context

 I/O is only meaningful in a specific context
 "Input" and "output" may not be simple concepts

– Cruise control systems: many sensors, complex conditions, and timing
constraints only understandable in the application context

University of California, Irvine

Techniques for Requirements Analysis
 Conduct interviews
 Build and evaluate prototypes
 Construct glossaries
 Separate concerns
 Focus on structure

– Abstraction and hierarchical decomposition
 Use precise notation (be careful with diagrams!)
 Ask yourself:

– Is it testable? Complete? Consistent?

University of California, Irvine

Canonical Diagram for Requirements Objects

Object Name

Description/Attributes

Operations it can be asked to perform
• op1
• op2
• ...

Requests made of other objects

Note: this will not be the appropriate notation for all application contexts!

Nested objects (hierarchical structure)

A place where mail can be delivered.
Name, Title, Street, City, State, ZipCode.
Operations:
(1) change any of the specified
attributes to have a particular value.
(2) read any or all of the attributes
(3) create/delete address

Mailing Address

A list of Mailing_Address objects.
Name (of list)
Operations:
(1) Add Mailing_Address to list
(2) Delete Mailing_Address from list
(3) Sort list
(4) “Print” list

Mailing List

Note: What about querying the list to
see if a particular address --- or part of
one -- is already a member?

An indexed set of places where chunks of
 ASCII data can be stored. Number of
indices, size of data currently stored in
each index
Operations:
(1) Fetch data at index
(2) Store data at index

Storage

Supports manipulation of multiple
mailing lists.
Operations:
(1) Union of two lists
(2) Intersection of two lists
(3) Subtraction of one list from another

Mailing List Set Ops

What the human user interacts with in
order to manipulate or obtain any info.
Attributes: media and modes
Operations:
(1) Login (authenticate user)
(2) Parse and execute command

User Interface

Note: are the values to the “puts” or received
from the “gets” strings? Only strings?

Mailing List Manager

A list of Mailing_Address objects.
Name (of list)
Operations:
(1) Add Mailing_Address to list
(2) Delete Mailing_Address from list
(3) Sort list
(4) “Print” list
(5) Combine (union) two lists
(6) Intersection of two lists --> list
(7) List2 = List1 - List0
(8) Store list
(9) Retrieve list

Mailing List

An indexed set of places where chunks of
 ASCII data can be stored. Number of
indices, size of data currently stored in
each index
Operations:
(1) Fetch data at index
(2) Store data at index

Storage

What the human user interacts with in
order to manipulate or obtain any info.
Attributes: media and modes
Operations:
(1) Login (authenticate user)
(2) Parse and execute command

User Interface

Mailing List Manager, Take 2

A place where mail can be delivered.
Name, Title, Street, City, State, ZipCode.
Operations:
(1) change any of the specified
attributes to have a particular value.
(2) read any or all of the attributes
(3) create/delete address

Mailing Address

Is this better, or worse?

Cruise Control System

Controls vehicle throttle

Operations:
(1) Apply throttle x%
(2) Get current throttle setting?
(3) Throttle pedal depressed?

Throttle Controller

Determines state of braking system

Operations:
(1) Brake pedal depressed?
(2) ABS active?

Brake Controller

Determine vehicle speed
Operations:
(1) Get speed

Vehicle Speed

Determine rate of rotation of front axle
Operations:
(1) Get rotation rate

Front axle sensor

Operations:

Cruise Controller

Determines state of CC buttons and levers
under driver’s control
Operations:
(1) Get button state 1
(2) Get button state 2
(3)...

Cruise Control Interface

Determine rate of rotation of rear axle
Operations:
(1) Get rotation rate
(2) Get rotation direction

Rear axle Sensor

Notes:

1. No transmission status?

2. CC doesn’t access axle
sensors directly

University of California, Irvine

Different Circumstances,
Different Techniques

Finite state machines
–telephony examples

Numerical systems
–e.g. matrix inversion package

University of California, Irvine

Acceptance Test Plan
 An operational way of determining consistency between the requirements

specification and the delivered system
 If the system passes the tests demanded by this plan, then the buyer has no

(legal) basis for complaint
 Develop a plan for conducting test to examine

– Functional properties
– Performance properties
– Adherence to constraints
– Subsets

 Representative technique: Property/test matrix: for each test case, what
properties/behaviors will be demonstrated?

University of California, Irvine

V-Model of
Development and Testing Activities
Specify Requirements

Requirements Review

Develop System/Acceptance Tests

Design Review

Develop Integration Tests

Develop Unit Tests

Code Review Unit Tests
Review/Audit

Integration Tests
 Review/Audit

System/Acceptance Tests Review

Execute System Tests

Design

Code Execute Unit Tests

Execute Integration Tests

University of California, Irvine

Incremental Development of Tests

Acceptance test plan (and tests): develop during
requirements analysis

Integration test plan (and test): develop during
system architecture and detailed design
specification

Unit test plan (and tests): develop during
implementation

University of California, Irvine

ICS 52 Requirements Analysis Exercise

Develop a requirements specification and
acceptance test plan for the class project

TAs are the customer

