
Chimera: Hypermedia for Heterogeneous
Software Development Environments

KENNETH M. ANDERSON
University of Colorado, Boulder
and
RICHARD N. TAYLOR and E. JAMES WHITEHEAD, JR.
University of California, Irvine

Emerging software development environments are characterized by heterogeneity: they are
composed of diverse object stores, user interfaces, and tools. This paper presents an approach
for providing hypermedia services in this heterogeneous setting. Central notions of the
approach include the following: anchors are established with respect to interactive views of
objects, rather than the objects themselves; composable, n-ary links can be established
between anchors on different views of objects which may be stored in distinct object bases;
viewers may be implemented in different programming languages; and, hypermedia services
are provided to multiple, concurrently active, viewers. The paper describes the approach,
supporting architecture, and lessons learned. Related work in the areas of supporting
heterogeneity and hypermedia data modeling is discussed. The system has been employed in a
variety of contexts including research, development, and education.

Categories and Subject Descriptors: H.5.1 [Multimedia Information Systems]; D.2.2 [Soft-
ware Engineering]: Tools and Techniques; I.7.2 [Document Preparation]: Hypertext/
Hypermedia

General Terms: Design

Additional Key Words and Phrases: Heterogeneous hypermedia, hypermedia system architec-
tures, open hypermedia systems, link servers, software development environments

This article is a major revision and expansion of a paper which appeared in the Proceedings of
ECHT ’94.
This effort was sponsored by the Defense Advanced Research Projects Agency, and Rome
Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-97-0021.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and conclusions
contained therein are those of the authors and should not be interpretted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government.
Authors’ addresses: K. M. Anderson, Department of Computer Science, University of Colorado,
Boulder, ECOT 717, Campus Box 430, Boulder, CO 80309-0430; email: kena@cs.colorado.edu;
R. N. Taylor and E. J. Whitehead, Jr., Department of Information and Computer Science,
University of California, Irvine, CA 92697-3425; email: {taylor; ejw}@ics.uci.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1046-8188/00/0700–0211 $05.00

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000, Pages 211–245.

1. INTRODUCTION

Software development environments (SDEs) are used to develop and main-
tain a diverse collection of highly interrelated software objects [Boudier et
al. 1988; Fernstrom et al. 1992; Kadia 1992; Thomas 1989] in a distributed,
multiuser context. Large software systems may, for example, consist of
multiple versions of requirements specifications, designs, prototypes,
source code, test information, scripts, and documentation. Establishing and
exploring the many and complex connections between these components
are major tasks of development, program understanding, and maintenance.
In 1986, Delisle and Schwartz suggested that the attributes of hypermedia
made it a promising technology for capturing and visualizing such relations
in CAD environments (a closely related area) [Delisle and Schwartz 1986].
Since then several research groups have explored the idea of supporting
navigation and access to SDE artifacts with hypermedia technology [Creech
et al. 1991; Ferrans et al. 1992; Garg and Scacchi 1990; Oinas-Kukkonen
1997; Østerbye 1995]. The objectives have typically included allowing an
engineer to freely associate objects without regard to the type of those
objects or where they are stored and, subsequently, to support their
navigational access through a convenient user interface. This paper de-
scribes the approach employed by the Chimera open hypermedia system
(OHS) to address this research area, and also serves as an archival
reference for Chimera’s implementation techniques.1 The primary purpose
of this paper is to communicate how various techniques can be used in
tandem to make environmentwide heterogeneity manageable and to pro-
vide enough information to enable researchers outside of the open hyper-
media field to apply these techniques in new domains.

1.1 Technical Requirements

The design of the Chimera open hypermedia system evolved from our
research in the software engineering and user interface development
domains [Kadia 1992; Taylor et al. 1995]. In particular, the following
technical requirements are important for supporting and managing large-
scale heterogeneity within these domains:

(1) Heterogeneous object editor and viewer support. SDEs contain a
wide variety of tools for developing and manipulating objects. SDEs
also increasingly include multiple viewers of single objects, where each
viewer presents different aspects of the object, perhaps using different
depiction styles. We feel it is unlikely that software development teams
will give up their favorite tools in exchange for hypermedia functional-
ity. Ideally, all editors and viewers in an environment should be able to
use hypermedia services and respond to hypermedia events.

(2) Anchors specialized to particular views. Given that different view-
ers of a single object may present strikingly different depictions, or that

1According to Merriam-Webster’s 9th Collegiate Dictionary, a chimera is “an individual,
organ, or part consisting of tissues of diverse genetic constitution. . .”

212 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

one viewer may present a depiction of information synthesized from
several separate objects, anchors seem more naturally—or necessari-
ly—associated with views, rather than objects.2 For example, program
source code may be viewed as text, as a control-flow graph, or as a
data-flow graph, with separate anchors on each view.

(3) Hypermedia information separate from object contents. Applica-
tions unaware of hypermedia services, such as commercial compilers,
must be capable of using their objects without change. Similarly the
number and type of views of an object is commonly subject to unpredict-
able change over the life of a project. These requirements strongly
suggest that hypermedia information be stored separately from the
objects to which they pertain.

(4) Multiple-view, concurrent, and active displays. Since a software
developer is typically engaged in examining and changing many differ-
ent related objects at once, it is most supportive to provide a system
which enables many views to be present simultaneously, where several
views may be of the same object, and where actions in views may be
autonomous and concurrent.

(5) Links across heterogeneous object managers. SDEs manage such
a wide variety of objects, of different legacies, types, and possessing
different object management constraints, that large-scale SDEs are now
beginning to support multiple, heterogeneous object managers. It is
essential to be able to establish links between objects that are managed
by different repositories.

(6) Scalable (composable) links. Hierarchy and abstraction are two key
tools that engineers employ in undertaking large-scale problems. Hy-
permedia support for SDEs must similarly provide such capabilities for
dealing with large, complex, aggregations of information.

(7) n-ary links. Software development often involves situations where
several pieces of information jointly represent a single concept or are in
some sense “grouped.” We claim therefore that hypermedia support for
SDE applications should provide such capabilities in the form of n-ary
links.

Other concerns can be addressed by hypermedia systems that support
SDEs. In fact, the hypermedia community has produced multiple sets of
requirements for real-world hypermedia such as the 15 assumptions for
hypermedia-in-the-large [Leggett and Schnase 1994] and the requirements
set forth for industrial-strength hypermedia [Malcolm et al. 1991; Parunak
1991]. Among these concerns are issues such as scripting, collaboration,
versioning, and integration with the World Wide Web (WWW). We have
explored the latter two issues in current research [Anderson 1997; White-
head 1999b]. However, in the initial design of Chimera we chose to focus

2In this section, we refer to intuitive notions of objects, viewers, views, anchors, and links. See
Section 2.1 for more details.

Chimera • 213

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

our support on heterogeneity and providing core hypermedia services while
keeping the entry barrier to use as low as possible.

This paper describes a set of concepts and techniques implemented by a
system employed by users in real-world contexts. The notion of viewers of
objects is at the heart of the conceptualization. We postulate an environ-
ment of many types of objects where display or editing of an object requires
use of a viewer. Not all viewers are of the same type. How viewers manage
their display and what services they provide is totally under the control of
the software developer creating the viewer. We have developed a set of
interfaces whereby a viewer announces to the hypermedia system the
anchors it defines for its view of its object(s). These view-specific anchors
can then participate in (many) links. Links are objects in their own right,
and may thus have viewers associated with them which can define yet
additional anchors. These anchors can participate in other links, and in so
doing provide hierarchical composition. Since heterogeneous environments
are most often multilingual (i.e., multiple programming and scripting
languages) and distributed, the generic architecture and our implementa-
tion are client-server based, and a multilingual interprocess communica-
tion mechanism (Q [Maybee et al. 1996]) is utilized in our implementation.

Example. A simple example demonstrates the concepts discussed so far
(see Figure 1). Three separate applications utilize hypermedia services to
provide a simple SDE. An integrated text editor (XEmacs) allows anchors
to be created over ASCII source code, while an integrated document
processor (FrameMaker) provides the same functionality for design and
requirements documents. A developer of an integrated flight simulator
creates links to explicitly capture the implicit relationships between a
gauge, its source code, and its requirements document. These navigational

Fig. 1. The essence of hypermedia support for software development environments. An
airspeed gauge from an active flight simulator is linked (Link 1) to its source code on the left
and its requirements document on the right. A more specific link (Link 2) relates a design
requirement to the line of code which implements the specified constraint.

214 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

relationships can be used by developers to quickly perform requirements
traceability tasks with a single mouse click.

The FrameMaker documents and the ASCII source code are considered
Chimera objects, as is the value for the flight simulator’s airspeed. XEmacs,
FrameMaker, and the airspeed gauge are Chimera viewers. The windows
displayed by the editors and the visual depiction of the airspeed gauge are
Chimera views. Anchors can be defined on each of these views. XEmacs
provides anchor granularity at the row/column level, while FrameMaker
maps anchors to specific paragraphs. The airspeed gauge associates only a
single anchor with the entire gauge (as opposed to supporting multiple
anchors referring to specific regions of the gauge). The straightforward
mapping of the elements of the example into Chimera concepts demon-
strates Chimera’s flexibility.

This example justifies the existence of the technical requirements above.
The presence of the flight simulator, FrameMaker, and XEmacs demon-
strates the need for support of heterogeneous viewers (requirement 1) with
multiple-view, concurrent, and active displays (requirement 4). Without
satisfying these requirements, even simple scenarios such as this example
could not be supported. All three clients have a different user interface for
manipulating and accessing anchors, demonstrating the need for view-
specific anchors (requirement 2); the fact that each client stores persistent
information in different formats requires the ability to link information
across heterogeneous object managers (requirement 5). FrameMaker and
XEmacs store anchor information separately from the original document.
Since these documents are not modified to add support for hypermedia,
they are available for processing by other tools, such as a FrameMaker
plug-in or a compiler (requirement 3). In addition, n-ary links were re-
quired in order to simultaneously link the running flight simulator to both
its requirements document and source code (requirement 7). Finally, while
not specifically addressed by this example, the need for composable links or
“links to links” [Halasz 1988] (requirement 6) can be imagined by consider-
ing the use of “configuration management” links that enable traversals
between sets of links instantiated for the gauge across multiple versions of
the source code, requirements documents, and flight simulator.

1.2 Design Assumptions

Chimera’s primary design goal is the accommodation of existing SDEs
comprised of heterogeneous applications, data objects, and repositories.
Designed to augment an existing SDE with hypermedia services without
requiring modifications to existing clients, objects, or object stores, Chi-
mera reduces the entry barrier for adoption. In this accommodationist
approach, Chimera is aligned with existing open hypermedia systems
[Østerbye and Wiil 1996] that also share the goal of increasing the value of
existing environments, rather than drastically altering them.

Three control choices constrain the Chimera system architecture. Chi-
mera controls the hypermedia structure—the links and anchors that ex-

Chimera • 215

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

press relationships in an SDE—but does not control the storage of the
objects being related, nor the user interface used to display and manipulate
them. This characterizes Chimera as a link server system according to the
taxonomy of open hypermedia systems in Østerbye and Wiil [1996]. An
object manager, such as a file system, database, or configuration manage-
ment system, controls object storage; Chimera accommodates the object
manager(s) used by a given SDE. Each application controls its own user
interface and provides link creation and traversal capabilities. In contrast,
on the Web [Berners-Lee 1996] the user interface is controlled via the
browser. As discussed in Whitehead [1999a], Chimera’s control choices are
similar to those made by other open hypermedia systems.

The choice of not providing object storage services distinguishes Chimera
from open hyperbase systems (for instance, Grønbæk and Trigg [1994],
Nürnberg et al. [1996], and Wiil and Leggett [1996]), the other main class
of open hypermedia systems, which do provide storage for objects, along
with anchors and links. Open hyperbase systems are similar to the re-
search on object management systems performed in the software engineer-
ing community, in which SDE artifacts and relationships are stored in an
object manager. Both open hyperbase and object management systems
require existing tools to be integrated with the repository for storage of
persistent data. Though open hyperbase systems do allow data to be stored
outside the repository, applications that use the repository typically receive
a higher level of service than those which do not [Wiil and Leggett 1996].
Since integrating applications with a new storage repository requires
additional integration effort over that required for integrating anchor and
link creation and link traversal functionality, Chimera opted for the
approach of accommodating existing repositories. This choice helps reduce
integration, hence adoption, effort.

The Chimera system assumes its users are all located on the same local
area network, and have access to the same object store, such as a network
file system. Consistency maintenance of a hyperweb motivates this design
choice. By centralizing hypermedia structure storage, the impact of a single
change to the structure can be identified, and consistency maintenance
steps can be performed, thus avoiding dangling links. By avoiding poten-
tially high Internet latency, Chimera operations perform quickly, though
limiting scale to local users. We recognize other systems address issues of
relationship management across a wide area network (for instance, van der
Hoek et al. [1996] and Wiil and Leggett [1997a]), and have ourselves
addressed this in recent work [Anderson 1997].

As part of its strategy for accommodating existing SDEs, Chimera
creates an internal model of the users, tools, objects, and views used in the
SDE. Chimera then connects a hypertext network to this model using links
comprised of anchors defined on views. Chimera receives its knowledge
about the external world from its clients, which directly manipulate and
query the model using remote procedure calls (RPC). In reverse, Chimera
updates clients when its model changes using event notifications that are
also sent using the RPC mechanism.

216 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

The remainder of the paper is organized as follows: the next three
sections present our conceptual foundations, implementation issues, and
future plans; we then discuss related work, use in an industrial setting,
system limitations, and conclude.

2. CONCEPTUAL FOUNDATIONS

The primary components of an open hypermedia system are its hypermedia
data model and its architectural abstractions. Chimera’s data model con-
sists of a flexible set of hypermedia concepts well suited for the software
engineering domain. Chimera’s architecture enables the provision of hyper-
media services to a heterogeneous set of applications. We present details of
both aspects below.

2.1 Hypermedia Concepts

Chimera’s data model consists of the following elements (See Figure 2):

Objects Objects are named, persistent entities whose
internal structure is unknown and irrelevant
to Chimera.

Fig. 2. Chimera’s hypermedia concepts. A user interacts with one or more views, generated
by viewers. Each client has at least one viewer active within it. Viewers access objects via a
storage mechanism (e.g., file system, database, object management system) and create one or
more graphical views depicting them. Anchors can be created on these views either automat-
ically by the viewer or explicitly by the user. Links define relationships between these
anchors. Chimera’s links are modeled as sets of anchors with each anchor in the set accessible
by link traversal to the others. Attributes can be associated with each concept, but are not
shown on the diagram to avoid clutter. A hyperweb consists of all of these elements.

Chimera • 217

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Viewers Viewers are named active entities that display
objects. The operations provided by a viewer
are specific to the viewer and the type of
object(s) it displays. Typically viewers provide
browsing, creation, and editing functionality
on objects within their domain.

Views Views denote a pair (n, o) where n is a viewer
for an object o. Note that an object may be
displayed by more than one viewer, and thus
participate in multiple views. For instance, a
spreadsheet can be displayed in a traditional
“rows and columns” view but can also be
displayed as a chart. In addition, objects can
be composed of other objects; thus multiple
objects can be displayed in a single view.
Views (and similarly anchors) do not
necessarily have to be visual displays. For
instance, this would be the case when an
autonomous agent manipulates Chimera
concepts via an application program interface
(API).

Anchors Anchors are defined and managed by viewers
in the context of a view. An anchor tags some
portion of a view as an item of interest.
Anchors are tailored by a viewer to the
particular view of the object being displayed.

Links A link is a set of anchors. All anchors in a
link are equally related to each other. Thus a
link traversal can begin at any member of a
link and lead to any other member or
members. This provides engineers with
support for the complex relationships found in
software projects in which one artifact is
simultaneously related to many others. In
addition, empty links and singleton links are
supported. Unlike HTML links [Berners-Lee
1996], Chimera links are not embedded in a
data object. Furthermore, links are first-class
objects in Chimera, and a viewer can be
constructed to display them. Anchors may be
created on these link views and included in
other links. In this manner Chimera supports
“links to links” [Halasz 1988], which supports
construction of large-scale networks of links.

218 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Attribute-Value Pairs To associate metadata with each instance of a
Chimera hypermedia concept, an arbitrary
number of attribute-value pairs can be defined
on each instance. An attribute-value pair
consists of two strings, one its name, the
other its value. Hypermedia systems
commonly use attribute-value pairs to provide
run-time semantics or behavior for
hypermedia entities [Conklin 1987]. Chimera
uses attributes for naming links, recording
anchor locations, providing access control
information, filtering, etc.

Clients Clients contain one or more viewers. The
client concept allows the accurate modeling of
multiviewer applications by separating per-
client and per-viewer responsibilities.

Users Users interact with the views displayed by
viewers (which are contained in clients). The
user concept allows Chimera to track active
users and their clients.

Hyperwebs A collection of objects, viewers, views,
anchors, links, clients, and users, along with
their attributes, is a Chimera hyperweb. A
hyperweb is similar to Leggett’s hypermedia
[Leggett and Schnase 1994] and Halasz’s
hypertext [Halasz and Schwartz 1994]. Some
hypermedia systems provide support for
contexts (for instance, Schnase et al. [1994]
and Wiil and Leggett [1996]) which are a
partitioning and work isolation mechanism
for hyperwebs [Delisle and Schwartz 1987].
Chimera does not provide a first-class context
mechanism, but does provide filtering on
concepts by users as a form of limited context
support.

A common question asked of all hypermedia models is “who points at
me?” or more generally, “how are objects related to one another?” Chimera’s
hypermedia concepts can answer this question in a straightforward fash-
ion. A view represents a visualization of some object, and it contains a set
of anchors, each of which can be included in many links. In order to answer
the above question, a client would iterate over each anchor contained in the
view and query for the set of links that contain it. The client would then
iterate over the set of links to retrieve the other anchors that are included
in each link. Each of these anchors belongs to views that are related to the
starting view, and each of these related views has an associated object.

Chimera • 219

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Once this process is complete, the client will have a list of objects that are
related to the object associated with the source view. An obvious concern is
performance; our implementation can perform this computation with ac-
ceptable speed. See Section 6 for more information.

Another common question asked of hypermedia models is related to
consistency. That is, if some element is deleted, how is the model updated
to remain in a consistent state. The answer for Chimera’s model is also
straightforward. Links can be deleted freely without impacting any other
aspect of the model. If an anchor is deleted, it must be removed from all
links that contain it. If a view is deleted, each of its anchors must be
deleted. If either a viewer or an object is deleted, then all views in which
that concept participates must be deleted. Deleting a viewer, object, or view
instigates a cascade in which potentially many elements are removed or
updated. Thus, removing a viewer causes all of its views to be deleted,
which in turn requires that all of their anchors be deleted, which in turn
requires that each anchor be removed from any links that contain it. We
continue our discussion of Chimera’s concepts below.

2.1.1 Dexter Comparison. The hypertext community held four work-
shops in the late 80’s to develop a standard reference model for hypertext
systems, known as the Dexter hypertext reference model (Dexter) [Halasz
and Schwartz 1994]. Dexter defines a model that spans both conceptual
and architectural concerns. In this section, we map Chimera’s hypermedia
concepts into Dexter to help clarify their roles with respect to the standard
model and to highlight a few differences that occur.

Objects. Chimera’s object concept corresponds to Dexter’s atomic compo-
nent. More specifically, it corresponds to an atomic component’s metadata
(referred to as “component info” in Halasz and Schwartz [1994]). Dexter’s
atomic component consists of content and metadata, and both are stored in
Dexter’s storage layer. In Chimera’s storage layer, only metadata are
stored; the content of an object can be stored anywhere, and the knowledge
for accessing that information is localized in viewers, thereby supporting
environments with heterogeneous object managers. SDE artifacts come in
many forms and are stored using a variety of storage mechanisms: requir-
ing content to be stored in Chimera’s storage layer would restrict the range
of types that can be used with Chimera and would negatively impact
Chimera’s ability to scale to large information environments.

In addition, there is a difference between the metadata stored in an
atomic component and the information associated with a Chimera object.
An atomic component’s metadata consist of an arbitrary set of attributes, a
presentation specification (pSpec), and a set of anchors. A Chimera object,
on the other hand, stores only references to its associated content, and a set
of attributes. Chimera objects have no need of an atomic component’s
pSpec, since presentation details are handled by Chimera views, and
anchors are associated with a view, not an object.

220 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Viewers. Chimera viewers have no direct correspondence with any
element in Dexter. Instead, Dexter defines a run-time layer model where
components get instantiated. An instantiation is created by presenting a
component to a user. This presentation is governed by two pSpecs: one
pSpec is supplied at the time of instantiation; the other is retrieved from
the component’s metadata. One or both of these specifications selects the
application that displays the component. This application, not explicitly
modeled by Dexter, would correspond to Chimera’s client concept. If this
client had more than one viewer within it, then presumably Dexter’s
pSpecs could also be used to select a relevant viewer during the instantia-
tion process.

Chimera uses its viewer concept to accurately model one aspect of its
external environment. Chimera knows what clients exist, the object types
they can display (type information is stored as attributes on viewers), and
the views in which they participate. Associating attributes with viewers
allows Chimera to record viewer preferences along a variety of dimensions
including, for example, whether a viewer can display more than one view at
a time. Note, Chimera allows attributes to be associated with client
concepts; however, this capability is rarely used. In practice, associating
attributes with viewers is more common, since this information persists
between sessions, whereas clients are modeled only at run-time. We antic-
ipate making use of client attributes in the future, especially when Chime-
ra’s support for collaboration is enhanced (see Section 4.2). In particular,
client attributes can be used to track characteristics such as the collabora-
tive session a client is participating in, its coupling mode [Dewan and
Choudhary 1995], etc.

Views. Chimera views also have no direct correspondence to any Dexter
element. A view is essentially a static specification of possible instantia-
tions that can occur in Dexter’s run-time layer. A view records both the
viewer and object involved in an instantiation and stores references to a set
of anchors that have been associated with the instantiation. In Dexter, an
instantiation consists of a base instantiation (the instantiation of the
underlying component), a list of link markers (visual indications of the
presence of a link), and a function that maps link markers into the
underlying component’s set of anchors. Dexter’s link marker mapping
function is not needed by a view, since that responsibility is handled by the
anchor concept.

Anchors. In Chimera, anchors are associated with views, not objects,
with the views acting as a level of indirection between the content of a
component and the anchors that refer to that content. In Dexter’s atomic
components, this layer of indirection does not exist. Dexter anchors are
stored in a component’s metadata and maintain indexes into the compo-
nent’s content. This information is stored in Dexter’s within-component
layer. The indexes associated with a Dexter anchor are opaque to Dexter’s
storage layer and are interpreted only by an application directly aware of
the format of the component’s content.

Chimera • 221

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Chimera attempts to raise the level of abstraction that is used to create
these indexes. By associating anchors with views, the index that is stored
in a Chimera anchor is defined in terms of the abstractions of the view, not
in terms of the format of the underlying content. Consider anchors associ-
ated with two views of a spreadsheet object. One presents a typical “rows
and columns” presentation of the spreadsheet, while the second presents a
graphical pie chart view. Anchors on the former can make use of the row
and column abstractions to specify the content to which they refer, while
anchors on the latter can refer to individual pie slices on the pie chart,
referring to data synthesized from many different cells in the spreadsheet.
While Dexter does not explicitly contain a view concept, its notion of a
composite can be used to provide similar capabilities. A composite compo-
nent has the same structure as an atomic component except that its content
can include one or more atomic components. In this instance, the anchors
associated with a composite would be referring to the atomic components
contained within the composite and would thus be at a similar level of
abstraction as Chimera’s anchors.

Links. A Dexter link is a special type of component that consists of a set
of two or more component specifiers. Dexter requires that all links be at
least a binary relationship and that all members of the link refer to
existing components. No singleton or empty links are allowed. This decision
has generally been viewed as too restrictive, and the Dexter model has, by
general consensus, relaxed these constraints [Grønbæk and Trigg 1994;
Leggett and Schnase 1994]. Each specifier in a Dexter link identifies a
component, an anchor, a link direction, and a pSpec. The component and
anchor are used to uniquely identify the information that the link is
relating. A specifier’s direction can contain the following values: NONE,
TO, FROM, and BIDIRECT.

Chimera links contain references to zero or more anchors. Each anchor is
assumed to have a directionality of BIDIRECT. Thus, a Chimera link
traversal can start at any anchor and will lead to all other anchors in the
set. Attributes take the place of Dexter’s pSpecs for link traversal and can
be used to achieve a variety of link traversal behaviors including, for
instance, guided tours [Conklin 1987]. Recent work [Anderson 1997] uses
anchor attributes to select link traversal behavior.

Missing Elements. The composite component is a Dexter conceptual
element that does not have a Chimera counterpart. One way of addressing
this drawback in Chimera is the use of views comprised of multiple objects,
allowing anchors to be defined on composite views. Alternately, Chimera
clients can construct an object reference that specifies multiple external
objects. The problem with this workaround is that Chimera provides no
way to associate anchors with subobjects, requiring viewers to employ ad
hoc procedures to achieve this functionality. Recent work has extended
Chimera’s object concept to be able to contain subobjects explicitly. This
extension provides an abstraction known as a static composite [Halasz

222 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

1988]; virtual composites [Grønbæk 1994], on the other hand, are not
supported.

2.2 Conceptual Architecture

In this section, we define a conceptual architecture for our open hyperme-
dia approach and discuss the requirements placed on each component of
the architecture. In Section 3, we discuss how our implementation of
Chimera meets the requirements defined in this section and consider their
consequences.

A client-server approach is employed to meet the challenges of a hetero-
geneous environment, shown in Figure 3. This approach allows multiple
users on different machines to access the sole active hyperweb from a
dynamically changing set of viewers; hypermedia messages originate in one
viewer and propagate to (potentially many) others via the server. Reaping a
standard benefit of client-server systems, the use of a machine- and
language-independent on-the-wire data representation allows clients to be
written in different programming languages, each accessing the server via
a language-specific API.

We now discuss the architecture’s components: the server, clients, API,
and process invoker.

Fig. 3. Chimera’s conceptual architecture. Chimera uses a client-server architecture. Each
user has a set of Chimera clients running in a distinct user space. These clients are typically
interactive, although that is not a requirement, and may consist of multiple viewers running
in separate threads. A client communicates with the Chimera server through the use of an
API. Clients may also interact with other systems in a user’s environment. Each user may run
a process invoker which can activate clients needed to complete link traversals. The process
invoker receives an invocation request from the server and maps the requested client to an
executable in the user’s environment.

Chimera • 223

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

2.2.1 Chimera Server. The Chimera server is the central element of the
conceptual architecture. Its primary responsibility is to provide hyperme-
dia services to its clients; these services include the generation of hyperme-
dia messages, the management and persistence of hyperwebs, and the
tracking of active clients.

There are three types of hypermedia messages: requests, responses, and
events. Chimera employs a standard RPC communication model where
clients generate requests, and the server generates responses in reply. In
response to changes in the hyperweb or to user actions, the server can
generate events and send them asynchronously to interested clients. For
instance, requests initiating a link traversal will generate link traversal
events targeted at the appropriate destination clients.

The server persistently stores instances of its hypermedia concepts in an
object management system. However, there is a distinction between Chime-
ra’s anchors, links, and views (where the server holds the master copy) and
viewers and objects (which simply store a reference to some external
entity). The distinction lies in the difference between the concepts that
enable hypermedia services and concepts which directly model Chimera’s
external environment. Users can organize this information into multiple
hyperwebs; when a concept is created it is assigned to the active hyperweb.

To facilitate rapid link traversal, the server tracks the active clients of all
users interacting with a hyperweb, allowing it to know which clients are
ready for link traversal events. The server also tracks whether a user has
invoked a process invoker to enable delayed link traversals (discussed
below).

2.2.2 Process Invoker. The process invoker is responsible for activating
clients requested by the server. This occurs when the server needs to send a
link traversal event to an unavailable client. This is called a delayed link
traversal. If the user has a process invoker running, the link traversal
event is held in the server until the target client has been spawned by the
process invoker. After client initialization, the server forwards the event to
the client, completing the traversal.

Use of the process invoker is at the user’s discretion. Situations in which
a process invoker might not be wanted include authoring activities, where
links are being created between a focused set of applications, or resource
limitations, where a user’s computer might not be able to handle the
demand of multiple applications invoked simultaneously. There is no more
than one process invoker active per user.

The process invoker maintains a mapping between viewer names and
executable programs (clients). After receiving a viewer name from the
server, the process invoker determines the associated program and invokes
it via operating system services. This map is supplied and maintained by
each user of Chimera and is akin to MIME-type mapping. This allows for a
limited form of end-user tailorability: for instance, if two Chimera-aware
JPEG viewers are available, the user can specify which one to invoke. Note

224 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

that other systems also employ a similar approach to our process invoker,
for example, HyperDisco [Wiil and Leggett 1996].

2.2.3 Chimera Client. A Chimera client is an executable program
containing one or more viewers and an API. All OHSes place demands on
their clients [Davis et al. 1994; Pearl 1989; Whitehead 1997]; Chimera is
designed to keep these demands to a minimum. This approach enables a
low-entry barrier to use and facilitates the integration of a diverse set of
applications.

Client Responsibilities. A client is responsible for establishing, main-
taining, and relinquishing a connection with the Chimera server. Since all
viewers in a client share a single connection to the server, a client must
route hypermedia events to its viewers. To enable the use of single-
threaded clients that cannot simultaneously process and receive events,
when the server sends a hypermedia event to a client, the server marks the
client as unready to receive additional events, queuing subsequent events
until the client indicates it can accept another. Whereas in Chimera the
client interacts directly with the server, in Hyperform [Wiil and Leggett
1992; 1997] a tool integrator sits between a client and the Hyperform
server. The tool integrator contains a scheme interpreter, allowing it to
perform services on behalf of clients, such as reducing the interaction work
required of clients and caching application objects.

Viewer Responsibilities. A viewer allows users to manipulate objects by
performing actions within its views. A viewer may access any external
system in order to accomplish this task. For instance, a viewer can make
use of a user interface management system to provide its user interface, or
an object management system to store its persistent information. The
Chimera architecture in no way restricts access to external systems, in
order to accommodate the heterogeneity of typical SDEs.

The primary responsibility of a Chimera viewer is the mapping of the
concepts “object,” “view,” and “anchor” into its application domain. Mapping
issues include how a view is presented to the user, what elements of a view
can have anchors attached to them, how these anchors are created and
deleted, how the presence of an anchor is indicated, and what attributes
the viewer supports. The viewer can choose to store information to facili-
tate this mapping in a variety of ways. For example, a viewer can store
display information in an attribute of an anchor to help reconstruct the
anchor’s visual presentation. It can also store hypermedia information in a
file that is associated with the set of objects being displayed, or it can
choose to compute the mapping each time without the use of persistent
information.

The second responsibility of a Chimera viewer is to correctly utilize the
hypermedia protocol of the Chimera server by making the appropriate calls
on the Chimera API. This includes notifying the server when it is active,
registering for hypermedia events, indicating its current set of views (this

Chimera • 225

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

set will change over time based on user interaction), and handling hyper-
media operations such as creating anchors and adding them to links.

The final responsibility of a Chimera viewer is the handling of hyperme-
dia events. For instance, a viewer typically responds to a link traversal
event by opening the target object and highlighting the destination anchor.
Once a viewer has finished processing an event, it must notify the client,
which then informs the server that it is ready for more events.

The drawback to this approach is user interface inconsistency. Since each
viewer may choose to implement access to the hypermedia services in
different ways, as dictated by its application domain, Chimera cannot
guarantee a uniform interaction style. This is potentially troublesome,
since the user has to remember how this hypermedia functionality is
invoked for each viewer [Ferrans et al. 1992]. This is a design trade-off
involving ease of use, open systems, and customized interfaces. We believe
a single, standard style is too restrictive and would prevent many existing
viewers from participating in Chimera. On the other hand, it is possible to
provide a set of reusable components that developers can utilize, which
simultaneously simplify the task of writing viewers and promotes uniform
authoring, display, and interaction styles.

2.2.4 Chimera API. The Chimera API is a language-independent set of
routines allowing remote creation and manipulation of hypermedia con-
cepts, management of server connections, and handling of hypermedia
events. The API must contain routines for creating, manipulating, and
deleting Chimera concepts, along with a set of query routines for viewers to
search information in the hyperweb. In addition to routines for establishing
and terminating server connections, the API must also provide a mecha-
nism to notify a client if a connection terminates unexpectedly. Finally, the
API must provide a mechanism allowing a client to specify how it is notified
of hypermedia events.

3. IMPLEMENTATION ISSUES

An initial prototype of Chimera was constructed in the summer of 1992.
Since then, Chimera has evolved significantly. The hypermedia concepts
discussed in Section 2.1 have been flexibly employed in a variety of client
integrations. The conceptual architecture discussed in Section 2.2 has been
realized in a concrete implementation. In this section, we describe our
implementation choices, along with the issues encountered and the lessons
learned in mapping our conceptual architecture into a robust system.

3.1 Chimera Server

The implementation of the Chimera server, described below, addresses the
issues and implements the responsibilities discussed in Section 2.2.1.

3.1.1 Internal Architecture. The multithreaded internal architecture of
the Chimera server is shown in Figure 4. The server is divided into three

226 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

conceptual tasks: handling client requests, managing the hypermedia net-
work and external world model, and generating events.

Handling a Client Request. The Service Request Handler manages
client connections, marshalling and unmarshalling of parameters for RPC
requests, and routing requests to invocations on abstract data types (ADTs)
in the World model. Client connections last for as long as the client is in
operation. As an example, a query by the client for the number of views
present in the active hyperweb results in request unmarshalling by the
Service Request Handler, which then invokes the How_Many_Views rou-
tine in the Hyperweb ADT, located in the World model. The How_Many_
Views routine queries the object management system for the correct result,
which it hands back to the Service Request Handler for marshalling as a
response message and transmission to the requesting client.

Hyperweb and World Models. The Object Manager and World Model
data structures consist of nine ADTs each. The Object Manager ADTs,
generated by Pleiades [Tarr and Clarke 1993], model the state of the
managed hyperweb and support query, manipulation, and persistence
operations upon it. All of the server’s persistent information is read into
memory at server start-up and written to disk at server shut-down. This
limitation (since new information can be lost if the server terminates
unexpectedly) is due to historical constraints imposed by Pleiades, and has
been addressed in a new version of Chimera that employs conventional

Fig. 4. Chimera server’s internal architecture. The Chimera server’s responsibilities are
distributed over a set of threads and ADTs which handle incoming requests from both clients
and process invokers, generate and handle hypermedia notifications/events, maintain a model
of the external world, and update the persistent state of the managed hyperweb.

Chimera • 227

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

relational database technology [Anderson 1997]. Each user selects which
hyperweb they want to access through a resource file (.CHIMERA) located in
their home directory, which the server reads on start-up.

The World Model ADTs track the state of the server’s external world.
This includes keeping track of all users interacting with the hyperweb, all
connected clients, all active viewers, and all connected process invokers.
The Chimera server stores the following information about a user: name,
active clients, process invoker status, active link, and delayed link tra-
versal events. For a connected client, the server maintains the client id,
client status, client notification connection, host and display information,
client filtering mode, and client viewers. For an active viewer, the server
stores the id, views, and interests in events.

The server stores the existence of a process invoker and its connection
information with the process invoker’s user record. This information is
updated by the Process Invoker Handler. A process invoker contacts the
Process Invoker Handler once at start-up and shut-down, allowing the
server to determine if a particular user can receive delayed link traversals.

Generating Hypermedia Events. Certain changes to the World Model
cause the generation of internal notifications. Each notification is pro-
cessed by the server’s Notification Handler to determine if a client has
registered interest in the notification, and, if so, it generates one or more
hypermedia events from the notification. Chimera currently defines 14
events which are described in Figure 5. Events sit in a separate monitored
queue until the Event Handler determines (via the World Model) if a client
is ready to receive an event. If the client is ready, it sends the event; if not,
the event is placed back on the event queue. All events for a particular
notification are handled before the events of a subsequent notification; thus
a partial ordering is maintained by the event queue. This has the drawback
of forcing all clients to wait for the slowest one to catch up (assuming it
ever does) before new events are received.

3.1.2 Link Traversal. Since the most basic functionality of any open
hypermedia system is the ability to traverse links, we now describe

Fig. 5. XEmacs integration. The Chimera Shell contains a communications translator which
converts between the text stream communication of XEmacs and the API-based communica-
tion of Chimera. XEmacs and the Chimera Shell together implement the Chimera ‘texted’ (text
editor) client. XEmacs possesses the ability to create sockets for use in interprocess communi-
cation, but the XEmacs/Chimera integration does not use this capability.

228 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Chimera’s link traversal process. A link traversal begins when a user
selects an anchor in an active view and performs the link traversal
operation on it. The viewer invokes the Traverse_Link subroutine of the
API, passing the identifier of the selected (e.g., source) anchor. If the
anchor is valid (e.g., registered in the active hyperweb), a Link_Traversed
notification is placed on the notification queue.

The Notification Handler retrieves every link which contains the indi-
cated anchor. It iterates through this list, and for each link retrieves its
anchors. It then iterates through this list of anchors, and for each anchor
that is not equal to the source anchor, it determines if the anchor’s viewer
is currently active. If the desired viewer is not running, the Notification
Handler queries the World Model to see if the user has a process invoker
running and, if so, generates a message to invoke the desired client. If a
user does not have an active process invoker, the traversal ends.

Otherwise, when the desired viewer is running, the Notification Handler
checks to see if it has registered interest in Link_Traversed events. If so, a
Link_Traversed event is created, parameterized by the destination anchor
and destination viewer, and placed on the event queue. If not, since the
client is uninterested in link traversal events (as is the case with the client
that can only generate requests, but cannot receive events), the traversal to
this particular anchor ends and will not be completed.

Eventually, each event is removed from the event queue by the Event
Handler which checks to see if the destination client is ready to receive a
hypermedia event, and, if so, sends it the Link_Traversed event. If the
client is not ready, the event is placed back on the event queue where it will
be processed at a later time. The link traversal ends when all destination
clients have received their Link_Traversed events. The client forwards the
event to the indicated viewer which examines the destination anchor and
displays this anchor to the user. The specific steps executed are different
for each viewer but in general involve determining the view associated with
this anchor, determining the object associated with this view, opening the
object, displaying the view, and highlighting the destination anchor.

3.1.3 Additional Server Features. In addition to fulfilling all of the
requirements described in Section 2.2.1, the server implements the addi-
tional features of filtering, active links, and invocation policies.

Filtering. Filtering is used to provide different hypermedia perspectives
of the same view. Based on a filtering level for each client and information
about a client’s user, anchors and links can be filtered such that different
sets can be provided to different users for the same view. The default
filtering level is NONE, i.e., all anchors and links for a particular view are
accessible. The other filtering level is USER_ONLY, such that only those
anchors and links created by a user on a particular view are accessible.
This functionality allows Chimera to provide limited support for multiple
contexts within a hyperweb.

Chimera • 229

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Active Links. Active links are a mechanism provided by the Chimera
server to allow modeless link creation. One active link is maintained for
each user connected to the Chimera server, and it acts as a pointer to an
existing link within the active hyperweb. In most hypermedia systems, link
creation occurs as a mode. The user indicates that a new link is desired,
adds (typically two) anchors to this link, and then continues working. In
Chimera, as well as in some other systems [Grønbæk and Trigg 1994;
Nürnberg et al. 1996; Wiil and Leggett 1996], a user can create several
empty links, select one of these links to be the active link, and then add
anchors to this active link at any time thereafter. The user can also at any
time select another link to be the active link. Thus, the active link is a level
of indirection which allows the sharing of a single link between a user’s
clients.

Client Invocation. With respect to client invocation, our experience has
distinguished a difference in the styles required by two types of viewers.
Some viewers are written to support the display of multiple views. When
this type of viewer receives a Link_Traversed event to an undisplayed view,
a new window is typically created to display the desired view. Thus, only
one invocation of this viewer is needed to display multiple views, and this is
indicated to the Chimera server by specifying a value of Once_Only for the
Invocation_Policy attribute, a predefined attribute on all viewers. Other
viewers are not as sophisticated and do not have the ability to switch views
after they have been invoked. Thus, multiple instances of this viewer are
needed to display multiple views simultaneously to the user. This type of
viewer is indicated to the Chimera server by assigning a value of Every_
Time to the viewer’s Invocation_Policy attribute.

3.1.4 Server Metrics. The server is implemented as a multithreaded
Ada application. It consists of approximately 81,000 lines of commented
source code. However approximately 60,000 lines of that code (74%) was
either generated or reused. Specifically Pleiades, our object management
system, generated 36,000 lines of code used to implement the Chimera
ADTs which model the structure of a hyperweb at run-time and manage its
persistence. The 24,000 lines of reused code consist of ADTs such as linked
lists, binary search trees, and hash tables from a library of software
components produced by the University of Massachusetts, Amherst [Tarr
and Clarke 1993].

3.2 Process Invoker

The process invoker relieves the user from anticipating the applications
needed for a particular session; if a link traversal leads to a new applica-
tion, the process invoker activates it. Once started, a process invoker
contacts the server to announce its existence, reads its map file (as
described in Section 2.2.2), and then enters a loop waiting for service
requests. The process invoker map is stored in a user’s home directory and
read once at start-up. The limitations implicit in this will be fixed in future

230 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

implementations by providing tools to manage a process invoker’s map at
run-time or by switching to a dedicated tool server.

When the server requests the process invoker to spawn a new process, it
sends a message containing the name of the desired viewer and the name of
the display upon which the viewer should place its output. The process
invoker searches for the specified viewer name in its association list and
invokes the associated client, if found. Since the process invoker allows a
remote process, the server, to invoke a program on a user’s machine, some
security risks occur. These risks are limited, however, since the map file
restricts the applications that can be run, use typically occurs within a
LAN setting, and a process invoker only interacts with a known server.

3.3 Chimera Client

A client is any entity interacting with the server via the API. This
definition covers a wide range of potential architectures including hyper-
media-unaware applications being controlled by Chimera-aware wrappers,
single-threaded C programs, and multithreaded Java Applets. We have
developed and integrated an extensive variety of clients including text
editors (XEmacs and xvi), image, sound, and video browsers, Chimera-
specific tools (hyperweb editors and link viewers), and wrappers for third-
party tools (FrameMaker). As an example, the integration of XEmacs with
Chimera is shown in Figure 6. In the remainder of this section, we examine
the consequences of the responsibilities placed on Chimera clients and
viewers in Section 2.2.3.

3.3.1 Impact on Legacy Systems. Integrating Chimera with an applica-
tion while it is being written is easy. By including Chimera support from
the start, the integration can occur at a deep level and provide sophisti-
cated hypermedia services. Unfortunately, new applications are vastly
outnumbered by legacy systems.

Legacy systems cannot typically achieve the level of hypermedia support
new applications provide. In general, they are large, complex, programs not
designed with hypermedia in mind. They do not often provide an API which
would allow them to be controlled by external applications. Thus, an
important issue for OHSes is incorporating hypermedia functionality into
these systems in a minimally intrusive fashion [Ashman et al. 1996; Bieber
1995].

If the legacy system has an API or an extension language, a wrapper can
be written and can assume the Chimera responsibilities for the legacy
system. If these mechanisms do not exist then the source code for the
legacy system must be modified to fulfill these responsibilities. If the
source code is unavailable then the best option is to attempt a launch-only
integration with the legacy system, a technique also employed in Davis et
al. [1994], Grønbæk and Trigg [1994], Wiil and Leggett [1997a].

3.3.2 Handling Service Interruption. Since Chimera has a client-
server architecture, Chimera clients must be prepared to deal with the

Chimera • 231

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

issue of service interruption. After a connection has been established, the
API automatically monitors (via its underlying RPC mechanism, Q) the
connection to detect an unexpected termination of the connection, generat-
ing a Server_Disconnected event if the connection is dropped. A client is
free to do anything at this point, ranging from terminating execution to
using a dialog box to inform the user of the suspension of hypermedia
functionality. While clients can attempt to reconnect to the server, this
process would essentially involve an inefficient polling process. Most devel-
opers opt to deactivate the hypermedia capabilities of their clients, placing
the burden of discovering when access to the server is restored on the
end-user. Clients which take this approach often provide a way (via a menu
item or button) to reestablish contact with the server.

3.4 Chimera API

The Chimera API provides the foundation upon which applications in a
user’s environment are easily integrated with the Chimera system. The
API consists of 81 entry points. Due to Chimera’s use of Q, which employs
the External Data Representation (XDR) portable data transmission stan-
dard, it is possible to write Chimera APIs which are independent of
implementation language and machine byte ordering. Chimera supports
clients written in Ada, C, and Java, with APIs for all three languages.
Several clients have been written using each of these APIs.

The Ada API creates two Ada tasks per viewer. One task handles sending
messages to the Chimera server; the second task handles receiving hyper-
media events from the server. These tasks operate independently and
maintain separate Unix sockets. This allows multiple connections to the
Chimera server within a single Unix process. The Ada API has proven to
work successfully with other client-server systems, the most notable being
a simultaneous connection by one viewer to a Chimera server, a user
interface management system, and a sound server.

The C API allows C programs to use Chimera services within a single
Unix process. Two sockets are maintained by the C API, requiring applica-
tion writers to take responsibility for the scheduling of message transmis-
sion and event reception. Since many programs using the C API also use X
Windows to produce their user interface, support was added to receive
Chimera events from within an Xt event loop. Chimera events are handled
using a callback mechanism. To date, six separate C programs have been
written which are simultaneously Chimera and X clients within a single
Unix process.

The Java API is a set of Java classes allowing access to Chimera services
within multithreaded Java applications (and applets). The Java API cre-
ates two threads per viewer similar to the Ada API; one thread sends
messages to the server, and the other receives events from the server. Java
applications implement an interface defined by the Java API so that
hypermedia events can be routed to them.

232 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

4. FUTURE WORK

While our experience to date with Chimera has been very positive, there
are several areas in which advancements would increase the value of the
system. Three are particularly notable in the SDE context: support for
versioning, support for collaborative hypermedia, and the integration of
open hypermedia systems with the WWW; they are discussed below. Also
important, but not discussed here, are (a) easing the difficulty of adding
hypermedia capabilities to existing tools and (b) supporting computed
links. The first topic is being addressed in an associated project [Whitehead
1997]. Computational links are already supported in a variety of other
projects, for instance Hall et al. [1996] and Schnase et al. [1994]. It remains
for us to determine the most effective way of adding this functionality to
Chimera.

4.1 Versioning

Version control mechanisms are very important for any hypermedia system
that wishes to support software engineering activities in a nontrivial
fashion [Campbell and Goodman 1988; Delisle and Schwartz 1987; Haake
and Hicks 1996; Halasz 1988; Hicks et al. 1998]. Chimera is no exception,
and a mechanism for versioning is a research priority [Whitehead et al.
1994]. Since Chimera intentionally offers no support for storing application
objects within its hypermedia database, version control responsibility must
be shared between Chimera, its client applications, and external object
managers. For example, when making links between source code files,
version control responsibility for the files will rest with a revision control
system such as RCS [Tichy 1982], while responsibility for versioning the
relations between the files will reside with Chimera.

We envision each Chimera concept becoming capable of multiple ver-
sions. This raises issues of consistency maintenance when a concept in-
stance is changed. For example, when an anchor is detected, it must also be
removed from any links to which it belongs, requiring a new version of
those links. Another issue is maintaining associations between versions
maintained by an external versioning system and versions maintained by
Chimera.

4.2 Collaborative Hyperweb Construction

Chimera does not support collaborative building of hyperwebs in real time
by multiple users. Limiting factors include the lack of transactions over the
hyperweb (two users modifying the same portion of a hyperweb can
overwrite each other’s changes), as provided in WebPern [Yang and Kaiser
1998] and HB/SPn [Schnase et al. 1994], and the lack of awareness
mechanisms, such as in Sepia [Streitz et al. 1992]. Thus, Chimera currently
relies on its users to coordinate their actions in the shared information
space. In recent work [Anderson 1997], a simple locking mechanism has
been added to the Chimera server as a step toward fully supporting
collaboration; however a transaction mechanism is still pending. For a

Chimera • 233

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

detailed look at issues related to concurrency control in collaborative
hypermedia systems, the reader is referred to Will and Leggett [1993].

4.3 Integration with the WWW

The WWW [Berners-Lee 1996] offers significant potential for software
development by globally distributed software teams [Fielding et al. 1998].
The Web’s advantages include extensible, standard data formats and access
protocols, low-entry barrier to use, and a high degree of distribution in
terms of work and data. Open hypermedia systems can significantly benefit
by leveraging these features through integration, since they would be able
to provide their services to a wider range of clients and over a larger
amount of data than currently possible. This integration would also provide
benefits to the WWW, since some of its current weaknesses—link consis-
tency management, modeling arbitrary relationships among disparate data
types, and modeling the links currently embedded in HTML—can be
addressed by the abilities of open hypermedia systems. Recent work has
addressed these issues in Chimera [Anderson 1997]; in addition, this
important topic has recently received a significant amount of attention
[Bouvin 1999; Carr et al. 1995; Grønbæk et al. 1997; Hall et al. 1996].

5. RELATED WORK

A wide range of research has been conducted in the area of hypermedia
systems and their application to software environments. Hypermedia sys-
tems have evolved from black-box (monolithic) applications to hyperbase
and linkbase systems to open hypermedia systems. Monolithic hypermedia
systems store all information (both content and hypermedia structures)
internally. No external applications or information can participate or be
included in the hyperweb. These systems (such as KMS [Akscyn et al. 1988]
or Apple’s HyperCard) excelled at producing self-contained hyperwebs on a
variety of topics; however, they did not lend themselves well to software
development, due to a lack of support for heterogeneity. In particular, they
do not support webs distributed over multiple heterogeneous object manag-
ers, nor is the set of tools which can manipulate the web open.

We have argued that support for heterogeneity is essential to support the
software development problem. As such, we now examine related work
among the subsequent forms of hypermedia systems, comparing and con-
trasting their support for heterogeneity with Chimera’s. In addition, we
briefly discuss elements contained in two additional hypermedia models
and compare them to Chimera’s set of hypermedia concepts.

5.1 Heterogeneity

In Section 1, we argued that hypermedia is suitably powerful and flexible
to manage the complex relationships inherent in large, diverse software
projects. A key characteristic of such large software projects is their
heterogeneity: in the data types of software development artifacts, in the
application programs used to support the development, and in the plat-

234 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

forms and implementation languages employed during development. For
application domains characterized by such heterogeneity, the approach
embodied by the Chimera system offers strong support in addressing this
heterogeneity. This support derives from fulfilling the hypermedia require-
ments described in Section 1.1 along with specific implementation tech-
niques employed with heterogeneity in mind. Existing hypermedia systems
typically address some, but not all, of these aspects of heterogeneity either
by failing to meet some of our requirements or by utilizing implementation
techniques best suited for a homogeneous environment. Hypermedia data-
base (hyperbase) systems inadequately handle the diversity of application
tools, while existing hypermedia link servers are too heavily tied to a single
implementation language or platform. These characterizations are detailed
below.

Work in hyperbase systems has a long research history. This work can
roughly be divided into closed and open hyperbase systems. An incomplete,
but representative, sample of closed hyperbase systems includes NLS/
Augment [Engelbart 1984], Neptune [Delisle and Schwartz 1986], HAM
[Campbell and Goodman 1988], HB1 [Schnase et al. 1991], HyperWeb
[Ferrans et al. 1992], and SEPIA [Streitz et al. 1992]. Closed hyperbase
systems employ a database to store both application content and hyperme-
dia structures. While hyperbase systems store and retrieve a wide range of
data types (such as text, graphics, and sound), the set of types is dependent
on the underlying database and cannot easily be extended by the end-user.
This hinders support for heterogeneity, since new types cannot be added to
the hyperbase in a straightforward fashion. Closed hyperbase systems
cannot easily integrate new tools, since a tool must be modified to store all
of its persistent information in the hyperbase. Since a closed hyperbase can
only provide hypermedia services over the data stored within it, no external
information can be linked into the system.

A representative sample of open hyperbase systems includes DHM [Grøn-
bæk and Trigg 1994], HOSS [Nürnberg et al. 1996], Hyperform [Wiil and
Leggett 1997b], HyperDisco [Wiil and Leggett 1996], and SP3 [Leggett and
Schnase 1994; Schnase et al. 1994]. These systems differ from closed
hyperbases in that applications can choose to store their content outside
the hyperbase. However, the quality of service provided to these applica-
tions is typically lower than applications which use the hyperbase for all
their storage needs [Wiil and Leggett 1996]. The reason for this difference
in service lies in the fact that the internal mechanisms of the hyperbase
enable some features, such as versioning, to be provided automatically for
content stored in the hyperbase. In addition, some open hyperbase systems
have extensible data models [Wiil and Leggett 1996; 1997b], allowing the
set of data types supported by the hyperbase to remain open.

Link servers [Meyrowitz 1989] are an alternative approach to open
hypermedia systems [Østerbye and Wiil 1996]. Example systems include
Chimera [Anderson et al. 1994], Microcosm [Davis et al. 1992; Hall et al.
1996], Sun’s Link Service [Pearl 1989], and PROXHY [Kacmar and Leggett
1991]. In contrast to hyperbase systems, link servers focus on storing only

Chimera • 235

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

hypermedia structures in their database. Applications are free to store
their persistent data anywhere. This directly addresses the heterogeneity
of data types, since the link server is kept unaware of the set of data types
used by its clients. With respect to the heterogeneity of clients supported by
the above three types of systems, both link servers and open hyperbase
systems can support a wider range of clients than closed hyperbase
systems, since they do not place restrictions on where an application stores
its data. In addition, it is easier to achieve a complete client integration
[Davis et al. 1994; Whitehead 1997] with a link server, since a complete
integration with an open hyperbase system requires that an application
store its data in the hyperbase. On the other hand, the level of service
provided to a fully integrated client by an open hyperbase system is higher
than a link server, since link server systems do not provide direct support
for versioning.

The WWW [Berners-Lee 1996] addresses one issue of heterogeneity the
preceding systems, in general, ignore. The Web’s approach of establishing a
standard set of data formats and communication protocols directly supports
the heterogeneity of computing platforms, allowing a hypermedia system to
be widely distributed cross-platform. This, coupled with the fact that the
Web is scalable in terms of the amount of information which can be linked,
extensible in terms of the capabilities of its protocols, and lightweight in
terms of its low-entry barrier to use, makes the Web the single most widely
adopted hypermedia system to date. However, the Web has several weak-
nesses in which it can benefit from the lessons learned in open hypermedia
systems. In the WWW, links are not first-class objects and thus must be
embedded into the linked objects directly. Data types not suited for link
embedding can be the destination of hypermedia traversals, but not the
initiator of a link; the information must first go through a data conversion
process in order for such data to become hypermedia-enabled. Likewise, the
only method for analyzing links (and thus resource dependencies) in the
Web is to actively traverse the hyperweb, either manually or with the
assistance of software agents (e.g., web spiders). This limits the system’s
ability to maintain referential integrity when resources change, to assist
the user in the navigation and visualization of the hyperweb, and to predict
the effects of a change before it is made.

Section 4.3 contains pointers to research in open hypermedia systems
that explore the integration of open hypermedia services into the Web. In
addition, recent work [Anderson 1999a; 1999b] has addressed issues of data
scalability in open hypermedia systems, although it will be difficult for
open hypermedia systems to attain the scalability achieved by the Web.
Finally, it should be mentioned that various research groups are examining
alternative architectures for providing hypermedia services over the Inter-
net [Maurer 1996; Wiil and Leggett 1997a]. In particular, HyperWave
[Maurer 1996] adopted an approach of providing a new hypermedia server
and client to replace existing WWW servers and clients. The new server
and client provide features found in open hypermedia systems, such as
maintaining consistency of the hypermedia model, and were compatible

236 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

with existing Web protocols. Thus, a user of a standard Web browser can
interact with a HyperWave server (although at a reduced quality of
service), and HyperWave users can still access all of the information stored
on the Web. HyperWave is not as scalable as the WWW, however, because
of its goal of maintaining link consistency which requires a HyperWave
server to inform all other HyperWave servers distributed across the globe
when a particular entity (such as a link, anchor, or object) is deleted.

5.2 Hypermedia Models

Section 2.1.1 compared Chimera’s hypermedia data model with the stan-
dard Dexter model. While this comparison is sufficient to characterize the
conceptual power of Chimera’s hypermedia concepts, there are additional
features in other hypermedia models that do not appear in Dexter, and
thus should be briefly described and compared with Chimera. The two
features considered here are Microcosm’s generic links and VIKI’s end-user
abstractions.

5.2.1 Generic Links. Microcosm [Hall et al. 1996] has a simple hyper-
media model which provides three types of links: specific, local, and generic
[Davis et al. 1992]. Chimera’s links are equivalent to Microcosm’s specific
links, and local links can be modeled in Chimera using whole-component
anchors [Halasz and Schwartz 1994]. Generic links, however, are not
supported by Chimera. A generic link is a very powerful mechanism
whereby a user can author a single link that can appear in multiple
contexts. For instance, a user can specify that anytime a particular phrase
appears in a document, it should be linked to some other document. This
mechanism requires a computational engine of some sort that examines the
content of linked documents looking for matches to generic link specifica-
tions. Since Chimera is unaware of the content maintained by viewers—a
design choice selected to increase Chimera’s support for heterogeneity—it
is difficult to add a generic link mechanism. Instead, recent work [Ander-
son 1997] allows users to dynamically load new link traversal semantics
into the Chimera server. Clients can access this new functionality via the
Chimera API. Since these new link traversal semantics can require differ-
ent types of input than the traditional link traversal algorithm of Chimera
(which accepts source anchors and maps them to destination anchors), a
mechanism similar to generic links can be enabled. However, clients must
be modified to send the appropriate information, for instance a text string,
to these new link traversal algorithms.

5.2.2 End-User Abstractions. Hypermedia systems vary in terms of the
abstractions they present to a user. By this, we refer to the model that
end-users form when working with a hypermedia system and the tools that
are provided for manipulating that model. For instance, despite the full set
of concepts described in Section 2.1, Chimera’s end-users primarily think in
terms of hyperwebs, anchors, and links. The remaining concepts and the
architectural abstractions discussed in the rest of the paper are back-

Chimera • 237

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

grounded, not really needed by end-users to complete their tasks. One
end-user abstraction mechanism, often provided by hypermedia systems, is
the ability to create typed links [Trigg 1983]. Chimera does not allow users
to create new link types; instead, this power is given to client developers to
create links which are tailored to a particular client or set of clients.

However some systems go beyond this simple form of abstraction to more
powerful mechanisms. Examples include gIBIS [Conklin and Begeman
1988], Aquanet [Marshall et al. 1991], and VIKI [Marshall et al. 1994]. For
instance, VIKI is a spatial hypermedia system used to study, among other
things, information triage [Marshall and Shipman 1997]. Information
triage is the process of determining how a set of documents can be best
organized to support a particular task. VIKI is well suited to this task,
since it allows users to create task-specific hypermedia structures which
use composition and spatial layout to help users organize and represent
knowledge over a set of information. While these mechanisms are powerful,
Chimera’s goal of providing navigational hypermedia services in heteroge-
neous SDEs did not require the use of them, at least not initially. By
keeping the hypermedia model simple, it is easier to provide support for it
in a wide range of clients. In the example systems above, the end-user
mechanisms are so powerful and specialized that the application which
provides them is the hypertext system itself. For instance, VIKI’s end-user
abstraction mechanism is not available outside the VIKI browser. However,
the desire to bring more powerful end-user abstraction mechanisms into
open hypermedia environments has contributed to the creation of a re-
search direction known as structural computing [Nürnberg et al. 1997], and
new research in this area may develop techniques for integrating these
mechanisms across a heterogeneous set of applications.

6. USE IN AN INDUSTRIAL SETTING

Chimera has been used in a variety of contexts, including software engi-
neering classes, research environments, and as the hypermedia infrastruc-
ture in industrial technology demonstrations. For example, the Military
Aircraft Systems Division of Northrop Grumman Corporation, as part of
their contract with the Defense Advanced Projects Research Agency’s
Evolutionary Design of Complex Systems program, conducted a case study
involving Chimera. The case study developed a technology demonstration
of a prototype next-generation development environment for avionics soft-
ware. The demonstration covered multiple phases of a software develop-
ment lifecycle, including requirements tracking, software testing, and
architecture evolution. Chimera was used as the underlying hypermedia
infrastructure both to demonstrate its use in navigating software relation-
ships (such as links between running simulations, source code, design/
requirements documents, and Web-based documentation) and in driving
the demonstration itself (via Chimera’s process invocation services).

The development group which implemented this demonstration received
their first Chimera demonstration in February of 1997. They acquired

238 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Chimera and several off-the-shelf Chimera clients and began constructing
their demonstration hyperweb in late March. Integration of Chimera with
one of their own applications began in April and was completed in time for
the July demonstration. Thus, Chimera was evaluated, adopted, and used
in a large-scale technology demonstration within a period of six months.
Not all of the demonstration preparation time was devoted to Chimera
however—the demonstration integrated a variety of new technologies—so
the actual time to learn and apply Chimera is significantly less than six
months.

The off-the-shelf Chimera applications used in the technology demonstra-
tion were Netscape Navigator, XEmacs, Chimera hotlist, and XGif.
Netscape and XEmacs allow HTML and ASCII (e.g., source code) docu-
ments to be linked into Chimera hyperwebs. The Chimera hotlist is a client
which provides a function similar to the bookmark mechanism in WWW
browsers. Essentially, the hotlist client stores a list of frequently accessed
Chimera views, allowing users to return to the stored views rapidly. XGif is
a public domain GIF image viewer modified to be a Chimera client. The
industrial demonstration developers were able to quickly begin construct-
ing their demo by simply downloading these clients and using them with
their existing data which were already stored in formats accessible to these
tools.

The developers took on the task of integrating one internal tool them-
selves. The tool was a crew-vehicle interface (CVI) which provided a
simulated cockpit of an advanced aircraft. Its user interface consists of a
set of panels, gauges, and artificial horizon displays. This client, written in
C11, made use of the C API. The developers reported that the API was
extremely effective in enabling hypermedia services within the simulated
cockpit (for instance linking a gauge to its associated requirements). They
reported that a significant amount of time was spent on preparing the CVI
to handle anchor selections; once anchor functionality was added, incorpo-
rating Chimera’s hypermedia services occurred quickly. This is in line with
research on client integration by the last author [Whitehead 1997]. Only a
handful of Chimera’s API operations were required to achieve the final CVI
integration. These included Register_Viewer, Register_Object, Register_
View, Register_Anchor, Get_Attribute, Set_Attribute, and Add_Anchor_To_
Active_Link. In addition, only three event handlers had to be implemented:
Active_Link, Link_Traversal, and Server_Disconnect.

The final demonstration hyperweb was compact. The hyperweb was
composed of seven viewers, 57 objects, 57 views (one view per object). Over
this set of information 78 anchors were created which were related by 36
links. While the size of this hyperweb seems small, it nevertheless captured
all of the relationships required by the technology demonstration. Chimera
has been tested on hyperwebs three orders of magnitude higher (e.g., tens
of thousands of concepts) but only in lab situations, not in a real-use
environment. The demonstration team did not collect metrics on the speed
of link traversal, but provided anecdotal evidence that link traversals
between active viewers were extremely fast, i.e., no significant delay was

Chimera • 239

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

experienced by the user. Delayed link traversals (see Section 2.2.2) take
longer to complete, since a user must wait for the destination client to be
invoked by the operating system. This example demonstrates Chimera’s
ability to provide hypermedia services in a heterogeneous software develop-
ment environment, our original goal.

7. LIMITATIONS OF THE CHIMERA APPROACH

The Chimera approach brings with it some limitations and requirements.
Our choice of a centralized approach limits the applicability of our tech-
niques to small workgroups distributed across a local area network (LAN).
However, by avoiding issues of distribution, our research was better able to
focus on issues of heterogeneity. In addition, recent work [Anderson 1997]
has extended Chimera to address issues of distribution by leveraging
aspects of the WWW.

Another limitation involves the need for modification of legacy applica-
tions in order to insert hypermedia functionality. In other words, in order
for our services to be of value, viewers must be programmed to utilize the
Chimera API. Some existing hypermedia systems have succeeded in avoid-
ing this limitation by exploiting an aspect of homogeneity in their environ-
ment. For example, the ABC system [Smith and Smith 1991] uses X-win-
dow system mechanisms to insert a hypermedia-aware parent window over
an application’s window, while Microcosm [Hall et al. 1996] employs a
universal viewer that exploits aspects of Microsoft Windows to add a
Microcosm menu to unaware applications. The Chimera approach opts not
to use these solutions in order to develop techniques that work in the
presence of heterogeneity.

A third limitation of the Chimera approach is its reliance on integrated
clients to provide information about the external world. For example, if a
viewer decides to move one of its objects, it must notify the hypermedia
system of the change. This allows Chimera to operate in environments
where a variety of storage mechanisms are employed while not requiring
any one of them. Again, this is consistent with our philosophy of supporting
heterogeneity at all levels and, further, is necessary for supporting large-
scale SDEs where complex configurations of storage mechanisms is the
norm.

Chimera is limited to a single active hyperweb per session, with no
ability to swap hyperwebs on-the-fly. This limits the use of hyperwebs as a
grouping and abstraction mechanism. The new version of Chimera no
longer relies on this mechanism; instead a graphical user interface allows a
user to specify a hyperweb via a URL [Anderson 1997].

The slow evolution of applications and data formats over time is another
limitation to the Chimera approach. Since the external integration mecha-
nisms provided by applications can change, a new revision can break
Chimera integration code, requiring ongoing effort to accommodate the
latest application revisions. Similarly, object data formats can change over
time, sometimes to the point of being unreadable by later application

240 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

revisions. This can cause older portions of long-lived hyperwebs to become
unreadable if the data are not consciously migrated to newer formats.

8. CONCLUSIONS

In conclusion, Chimera makes a variety of contributions to SDEs and to
hypermedia technology, including the satisfaction of all of the requirements
described in Section 1. The essence of the contributions are key concepts
and separations of concerns (architectural abstractions), provision of an
effective set of server capabilities, and the demonstrated ability to simulta-
neously satisfy a wide variety of objectives in a single system.

Chimera’s hypermedia concepts provide modeling power sufficient to map
a diverse range of application-specific structures to their hypermedia
counterparts. Neither the database(s) of objects nor the user interface of
Chimera clients are part of Chimera or its concepts. The concepts are
defined in a scalable and media-independent manner. Chimera’s view
concept in particular allows the modeling of the display capabilities of
applications in which a single object can be displayed by more than one
viewer or in which a single viewer can display more than one type of object.
The view concept also provides the abstraction required to allow objects to
be linked into a hyperweb without their modification. In addition, view-
specific anchors enable a key separation of the conceptual architecture:
object and anchor management from link management. Viewers manage
anchors, while Chimera manages links. Allowing viewers to define anchors
permits a variety of types of anchors to be defined, and they may be
implemented in noninvasive ways. Chimera’s conceptual architecture pro-
vides the abstractions necessary to enable the Chimera server to support
clients built with diverse architectural styles ranging from single-threaded
noninteractive link generators to multithreaded highly interactive end-user
applications. This power comes from the distinction between clients and
viewers and the clear demarcation of their responsibilities.

We have built an open hypermedia system, Chimera, to validate both the
concepts and architecture. The Chimera server supports multiple, concur-
rent clients written in multiple programming languages, and the integra-
tion of commercial black-box tools (provided they support minimal interpro-
cess communication) has been demonstrated. The implementation
technique of providing equivalent APIs in multiple programming languages
directly supports the heterogeneity found in SDEs and increases both the
range and depth of client integrations.

Chimera’s primary design goal is to provide hypermedia services to
existing software development environments comprised of heterogeneous
applications, data objects, and repositories. This goal has been achieved,
demonstrated by Chimera’s use in multiple environments, including aca-
demic and industrial settings.

Chimera • 241

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

ACKNOWLEDGMENTS

The authors would like to acknowledge Rebecca Grinter, Jonathan Grudin,
Leysia Palen, Hadar Ziv, and the ECHT’94 reviewers for reading the
conference version of this paper and providing comments. We would also
like to acknowledge Roy Fielding for his help in understanding WWW-
related issues. Uffe K. Wiil was kind enough to read an early draft of this
paper and provide insightful comments while on sabbatical at the Univer-
sity of California, Irvine. We thank the reviewers for their careful critique
of the initial submission. We also thank John Leggett for his extensive
review of both the initial submission and subsequent revisions. His guid-
ance was invaluable in preparing the paper for publication. In addition, the
authors’ gratitude is extended to the students in the software engineering
project courses whose experiences fine-tuned Chimera and enabled the
exploration of issues concerning the integration of legacy systems. Finally
we wish to thank Alexander Wise, Yuzo Kanomata, and Joe Feise for their
work integrating clients with Chimera.

Source code for the released system is available on the Internet at
,http://www.cs.colorado.edu/;kena/chimera/..

REFERENCES

AKSCYN, R. M., MCCRACKEN, D. L., AND YODER, E. A. 1988. KMS: A Distributed Hypermedia
System for Managing Knowledge in Organizations. Communications of the ACM, 31(7):
820–835.

ANDERSON, K. M. 1997. Integrating Open Hypermedia Systems with the World Wide Web.
In Proceedings of the Eighth ACM Conference on Hypertext, pp. 157–166. Southampton, UK.
April 6–11, 1997.

ANDERSON, K. M. 1999a. Data Scalability in Open Hypermedia Systems. In Proceedings of
the Tenth ACM Conference on Hypertext, pp. 27–36. Darmstadt, Germany. February 21–25,
1999.

ANDERSON, K. M. 1999b. Supporting Industrial Hyperwebs: Lessons in Scalability. In
Proceedings of the 21st International Conference on Software Engineering, pp. 573–582. Los
Angeles, CA, USA. May 16–22, 1999.

ANDERSON, K. M., TAYLOR, R. N., AND WHITEHEAD, E. J., JR. 1994. Chimera: Hypertext for
Heterogeneous Software Environments. In Proceedings of the Sixth ACM Conference on
Hypertext, pp. 94–107. Edinburgh, Scotland. September 18–23, 1994.

ASHMAN, H., BALASUBRAMANIAN, V., BIEBER, M., AND OINAS-KUKKONEN, H. 1996. The Second
International Workshop on Incorporating Hypertext Functionality Into Software Systems,
Washington D.C., USA.

BERNERS-LEE, T 1996. WWW: Past, Present, and Future. Computer, 29(10): 69–77.
BIEBER, M. 1995. The First International Workshop on Incorporating Hypertext Function-

ality into Software Systems. Technical Report 95-10. New Jersey Institute of Technology.
BOUDIER, G., GALLO, F., MINOT, R., AND THOMAS, I 1988. An Overview of PCTE and PCTE1.

In Proceedings of the ACM SIGSOFT’88: Third Symposium on Software Development
Environments, pp. 248–257.

BOUVIN, N. O. 1999. Unifying Strategies for Web Augmentation. In Proceedings of the Tenth
ACM Conference on Hypertext, pp. 91–100. Darmstadt, Germany.

CAMPBELL, B., AND GOODMAN, J. M. 1988. HAM: A General Purpose Hypertext Abstract
Machine. Communications of the ACM, 31(7): 856–861.

CARR, L. A., DEROURE, D. C., HALL, W., AND HILL, G. J. 1995. The Distributed Link Service:
A Tool for Publishers, Authors, and Readers. In Proceedings of the Fourth International
World Wide Web Conference, pp. 647–656. Boston, MA, USA. December 1995. ,http://
www.staff.ecs.soton.ac.uk/;lac/dls/link_service.html..

242 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

CONKLIN, J. 1987. Hypertext: An Introduction and Survey. IEEE Computer, 20(9): 17–41.
CONKLIN, J., AND BEGEMAN, M. 1988. gIBIS: A Hypertext Tool for Exploratory Policy

Discussion. In Proceedings of the CSCW’88, pp. 140–152. Portland, Oregon, USA.
CREECH, M. L., FREEZE, D. F., AND GRISS, M. L. 1991. Using Hypertext in Selecting Reusable

Software Components. In Proceedings of the Third ACM Conference on Hypertext, pp. 25–38.
San Antonio, Texas, USA. December 15–18, 1991.

DAVIS, H., HALL, W., HEATH, I., HILL, G., AND WILKINS, R. 1992. Towards an Integrated
Information Environment with Open Hypermedia Systems. In Proceedings of the Fourth
ACM Conference on Hypertext, pp. 181–190. Milano, Italy. November 30–December 4, 1992.

DAVIS, H. C., KNIGHT, S., AND HALL, W. 1994. Light Hypermedia Link Services: A Study of
Third Party Application Integration. In Proceedings of the Sixth ACM Conference on
Hypertext, pp. 41–50. Edinburgh, Scotland. September 18–23, 1994.

DELISLE, N. M., AND SCHWARTZ, M. D. 1986. Neptune: A Hypertext System for CAD
Applications. In Proceedings of the ACM SIGMOD’86, pp. 132–142. Washington DC, USA.
May 28–30, 1986.

DELISLE, N. M., AND SCHWARTZ, M. D. 1987. Contexts—A Partitioning Concept for Hyper-
text. ACM Transactions on Office Information Systems, 5(2): 168–186.

DEWAN, P., AND CHOUDHARY, R. 1995. Coupling the User-Interfaces of a Multiuser Program.
ACM Transactions on Computer-Human Interaction, 2(1): 1–39.

ENGLEBART, D. C. 1984. Authorship Provisions in AUGMENT. In Proceedings of the COMP-
CON’84, pp. 465–472. San Francisco, CA, USA. February 27–March 1, 1984. ,http://
www.bootstrap.org/oad-2250.htm..

FERNSTRÖM, C., NÄRFELT, K.-H., AND OHLSSON, L. 1992. Software Factory Principles, Archi-
tecture, and Experiments. IEEE Software, 9(2): 36–44.

FERRANS, J. C., HURST, D. W., SENNETT, M. A., COVNOT, B. M., JI, W., KAJKA, P., AND OUYANG,
W. 1992. Hyperweb: A Framework for Hypermedia-Based Environments. In Proceedings
of the ACM SIGSOFT’92: Fifth Symposium on Software Development Environments, pp.
1–10, Washington DC, USA.

FIELDING, R. T., WHITEHEAD, E. J., JR., ANDERSON, K. M., BOLCER, G. A., OREIZY, P., AND

TAYLOR, R. N. 1998. Web-Based Development of Complex Information Products. Commu-
nications of the ACM, 41(8): 84–92.

GARG, P. K., AND SCACCHI, W. 1990. A Hypertext System to Manage Software Life-Cycle
Documents. IEEE Software, 7(3): 90–98.

GRØNBÆK, K. 1994. Composites in a Dexter-Based Hypermedia Framework. In Proceedings
of the Sixth ACM Conference on Hypertext, pp. 59–69. Edinburgh, Scotland. September
18–23, 1994.

GRØNBÆK, K., AND TRIGG, R. 1994. Design issues for a Dexter-Based Hypermedia System.
Communications of the ACM, 37(2): 40–49.

GRØNBÆK, K., BOUVIN, N. O., AND SLOTH, L. 1997. Designing Dexter-Based Hypermedia
Services for the World Wide Web. In Proceedings of the Eighth ACM Conference on
Hypertext, pp. 146–156. Southampton, UK. April 6–11, 1997.

HAAKE, A., AND HICKS, D. 1996. VerSE: Towards Hypertext Versioning Styles. In Proceed-
ings of the Seventh ACM Conference on Hypertext, pp. 224–234. Washington DC, USA.
March 16–20, 1996.

HALASZ, F., AND SCHWARTZ, M. 1994. The Dexter Hypertext Reference Model. Communica-
tions of the ACM, 37(2): 30–39.

HALASZ, F. G. 1988. Reflections on Notecards: Seven Issues for the Next Generation of
Hypermedia Systems. Communications of the ACM, 31(7): 836–855.

HALL, W., DAVIS, H., AND HUTCHINGS, G. 1996. Rethinking Hypermedia: The Microcosm
Approach. Kluwer Academic Publishers, Norwell, MA, USA.

HICKS, D. L., LEGGETT, J. J., NÜRNBERG, P. J., AND SCHNASE, J. L. 1998. A Hypermedia
Version Control Framework. ACM Transactions on Information Systems, 16(2): 127–160.

KACMAR, C., AND LEGGETT, J. 1991. PROXHY: A Process-Oriented Extensible Hypertext
Architecture. ACM Transactions on Information Systems, 9(4): 399–419.

Chimera • 243

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

KADIA, R. 1992. Issues Encountered in Building a Flexible Software Development Environ-
ment: Lessons Learned from the Arcadia Project. In Proceedings of the ACM SIGSOFT’92:
Fifth Symposium on Software Development Environments, pp. 169–180.

LEGGETT, J., AND SCHNASE, J. 1994. Viewing Dexter with Open Eyes. Communications of the
ACM, 37(2): 77–86.

MALCOLM, K. C., POLTROCK, S. E., AND SCHULER, D. 1991. Industrial Strength Hypermedia:
Requirements for a Large Engineering Enterprise. In Proceedings of the Third ACM
Conference on Hypertext, pp. 13–24. San Antonio, TX, USA. December 15–18, 1991.

MARSHALL, C. C., AND SHIPMAN, F. M., III. 1997. Spatial Hypertext and the Practice of
Information Triage. In Proceedings of the Eighth ACM Conference on Hypertext, pp.
124–133. Southampton, UK. April 6–11, 1997.

MARSHALL, C. C., HALASZ, F. G., ROGERS, R. A., AND JANSSEN, W. C., JR. 1991. Aquanet: A
Hypertext Tool to Hold Your Knowledge in Place. In Proceedings of the Third ACM
Conference on Hypertext, pp. 261–275. San Antonio, Texas, USA. December 15–18, 1991.

MARSHALL, C. C., SHIPMAN, F. M., III, AND COOMBS, J. H. 1994. VIKI: Spatial Hypertext
Supporting Emergent Structure. In Proceedings of the Sixth ACM Conference on Hypertext,
pp. 13–23. Edinburgh, Scotland. September 18–23, 1994.

MAURER, H. 1996. Hyper-G now Hyperwave: The Next Generation Web Solution. Addison
Wesley Longman. 635 pages.

MAYBEE, M. J., HEIMBIGNER, D. H., AND OSTERWEIL, L. J. 1996. Multilanguage Interoperabil-
ity in Distributed Systems: Experience Report. In Proceedings of the Eighteenth Interna-
tional Conference on Software Engineering. Berlin, Germany.

MEYROWITZ, N. 1989. The Missing Link: Why We’re All Doing Hypertext Wrong. Pages
107–114, The Society of Text: Hypertext, Hypermedia, and the Social Construction of
Information. MIT Press.

NÜRNBERG, P. J., LEGGETT, J. J., AND SCHNEIDER, E. R. 1997. As We Should Have Thought.
In Proceedings of the Eighth ACM Conference on Hypertext, pp. 96–101. Southampton, UK.
April 6–11, 1997.

NÜRNBERG, P. J., LEGGETT, J. J., SCHNEIDER, E. R., AND SCHNASE, J. L. 1996. Hypermedia
Operating Systems: A New Paradigm for Computing. In Proceedings of the Seventh ACM
Conference on Hypertext, pp. 194–202. Washington DC, USA. March 16–20, 1996.

OINAS-KUKKONEN, H. 1997. Towards Greater Flexibility in Software Design Systems
through Hypermedia Functionality. Information and Software Technology, 39(6): 391–397.

ØSTERBYE, K. 1995. Literate Smalltalk Programming Using Hypertext. IEEE Transactions
on Software Engineering, 21(2): 138–145.

ØSTERBYE, K., AND WIIL, U. K. 1996. The Flag Taxonomy of Open Hypermedia Systems. In
Proceedings of the Seventh ACM Conference on Hypertext, pp. 129–139. Washington DC,
USA. March 16–20, 1996.

PARUNAK, H. V. D. 1991. Toward Industrial Strength Hypermedia. Pages 381–395 in E.
Berk and J. Devlin, Eds., Hypertext/Hypermedia Handbook. McGraw-Hill.

PEARL, A. 1989. Sun’s Link Service: A Protocol for Open Linking. In Proceedings of the
Second ACM Conference on Hypertext, pp. 137–146. Pittsburgh, PA, USA. November 5–8,
1989.

SCHNASE, J. L., LEGGETT, J. J., AND HICKS, D. L. 1991. HB1: Initial Design and Implemen-
tation of a Hyperbase Management System. Technical Report TAMU-HRL 91-003. Texas
A&M University.

SCHNASE, J. L., LEGGETT, J. J., HICKS, D. L., NÜRNBERG, P. J., AND SÁNCHEZ, J. A. 1994. Open
Architecture for Integrated, Hypermedia-Based Information Systems. In Proceedings of the
27th Hawaii International Conference on System Sciences, pp. 386–395. Weilea, HI, USA.
January, 1994.

SMITH, J. B., AND SMITH, F. D. 1991. ABC: A Hypermedia System for Artifact-Based
Collaboration. In Proceedings of the Third ACM Conference on Hypertext, pp. 179–192. San
Antonio, Texas, USA. December 15–18, 1991.

STREITZ, N., HAAKE, J., HANNEMANN, J., LEMKE, A., SCHULER, W., SCHÜTT, H., AND THÜRING, M.
1992. SEPIA: A Cooperative Hypermedia Authoring Environment. In Proceedings of the

244 • K. M. Anderson et al.

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Fourth ACM Conference on Hypertext, pp. 11–22. Milano, Italy. November 30–December 4,
1992.

TARR, P. L., AND CLARKE, L. A. 1993. PLEIADES: An Object Management System for
Software Engineering Environments. In Proceedings of the 1993 ACM SIGSOFT Symposium
on Foundations of Software Engineering, pp. 56–70. Los Angeles, CA, USA. December 7–10,
1993.

TAYLOR, R. N., NIES, K. A., BOLCER, G. A., MACFARLANE, C. A., ANDERSON, K. M., AND JOHNSON,
G. F. 1995. Chiron-1: A Software Architecture for User Interface Development, Mainte-
nance, and Run-Time Support. ACM Transactions on Computer-Human Interaction, 2(2):
105–144.

THOMAS, I. 1989. Tool Integration in the Pact Environment. In Proceedings of the Eleventh
International Conference on Software Engineering. Pittsburgh, PA, USA.

TICHY, W. F. 1982. Design, Implementation, and Evaluation of a Revision Control System.
In Proceedings of the Sixth International Conference on Software Engineering, pp. 58–67.
Tokyo, Japan.

TRIGG, R. H. 1983. A Network-Based Approach to Text Handling for the Online Scientific
Community. Ph.D. Thesis. Department of Computer Science. University of Maryland.

VAN DER HOEK, A., HEIMBIGNER, D., AND WOLF, A. L. 1996. A Generic, Peer-to-Peer Reposi-
tory for Distributed Configuration Management. In Proceedings of the 18th International
Conference on Software Engineering. Berlin, Germany. March 1996.

WHITEHEAD, E. J., JR. 1997. An Architectural Model for Application Integration in Open
Hypermedia Environments. In Proceedings of the Eighth ACM Conference on Hypertext, pp.
1–12. Southampton, UK. April 6–11, 1997.

WHITEHEAD, E. J., JR. 1999a. Control Choices and Network Effects in Hypertext Systems.
In Proceedings of the Tenth ACM Conference on Hypertext, pp. 75–82. Darmstadt, Germany.
February 21–25, 1999.

WHITEHEAD, E. J., JR. 1999b. Goals for a Configuration Management Network Protocol. In
Proceedings of the Ninth International Symposium on Systems Configuration Management.
Toulouse, France. September, 1999.

WHITEHEAD, E. J., JR., ANDERSON, K. M., AND TAYLOR, R. N. 1994. A Proposal for Versioning
Support for the Chimera System. In Proceedings of the Workshop on Versioning in Hypertext
Systems, pp. 45–54. Edinburgh, Scotland. September 18–23, 1994.

WIIL, U. K., AND LEGGETT, J. J. 1992. Hyperform: Using Extensibility to Develop Dynamic,
Open and Distributed Hypertext Systems. In Proceedings of the Fourth ACM Conference on
Hypertext, pp. 251–261. Milano, Italy. November 30–December 4, 1992.

WIIL, U. K., AND LEGGETT, J. J. 1993. Concurrency Control in Collaborative Hypertext
Systems. In Proceedings of the Fifth ACM Conference on Hypertext, pp. 14–24. Seattle,
Washington, USA. November 14–18, 1993.

WIIL, U. K., AND LEGGETT, J. J. 1996. The HyperDisco Approach to Open Hypermedia
Systems. In Proceedings of the Seventh ACM Conference on Hypertext, pp. 140–148.
Washington DC, USA. March 16–20, 1996.

WIIL, U. K., AND LEGGETT, J. J. 1997a. HyperDisco: Collaborative Authoring and Internet
Distribution. In Proceedings of the Eighth ACM Conference on Hypertext, pp.13–23.
Southampton, UK. April 6–11, 1997.

WIIL, U. K., AND LEGGETT, J. J. 1997b. Hyperform: A Hypermedia System Development
Environment. ACM Transactions on Information Systems, 15(1): 1–31.

YANG, J. J., AND KAISER, G. E. 1998. JPernLite: An Extensible Transaction Server for the
World Wide Web. In Proceedings of the Ninth ACM Conference on Hypertext, pp. 256–266.
Pittsburgh, PA, USA. June 20–24, 1998.

Received September 1996; revised November 1997, March 1998, June 1998, and October 1999;
accepted November 1999

Chimera • 245

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

