
University of California, Irvine

ICS 52: Introduction to Software
Engineering
Fall Quarter 2001

Professor Richard N. Taylor

Lecture Notes

http://www.ics.uci.edu/~taylor/ics52_fq01/syllabus.html

Copyright 2001, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine

Add/Drop Policy

� Second week of classes
– Deadline to add

� Second week of classes
– Deadline to drop

University of California, Irvine

Course Web Site

http://www.ics.uci.edu/~taylor/ics52_fq01/syllabus.html

� Contents
– Information on the instructors
– Overview and prerequisite knowledge

– Textbooks
– Schedule
– Assignments and assessment

– Teaching assistants
– Keeping in touch
– Computing

– Academic dishonesty

University of California, Irvine

Be Involved…But Don’t Be Too Involved

� You cheat, you fail!
– Final grade is “F”, irrespective of partial grades

– Project, midterm, final
� To avoid being a cheater

– Always do your work by yourself

– Do not borrow work
– Do not lend work

» Do not put your work on the Web

� “Your TA is your friend, but your friend is not your TA”
– Your friend’s help may be cheating

University of California, Irvine

Discussion Section

�Assignments: questions and answers
�Details of tools and methods

University of California, Irvine

Positioning in ICS Curriculum

� ICS 121: Software methods and tools
– Rigor and formality

– Additional software design strategies
– Additional analysis and testing strategies
– Configuration management

� ICS 122: Software Specification and Quality Engineering
� ICS 123: Software Architectures, Distributed Systems, and Interoperability
� ICS 125

– Management issues
– Working in a team
– A scaled-up project

University of California, Irvine

A note on class attendance and the book…

�What I say in class takes precedence over
what’s in the slides and what’s in the book

�What’s in the slides takes precedence over
what’s in the book

University of California, Irvine

Levels of Mastery

� Competency
– Software lifecycle
– Requirements specification

– Architectural design
– Module design
– (Programming)

– Testing and quality assurance
� Literacy

– SE principles

– Alternative software architectures
– Requirements engineering issues

� Familiarity
– Configuration management
– Concurrency

– Software process alternatives

–"Scratching the surface of
software engineering"

–" Fitting you to become an
amateur software engineer"

(See course website for definitive list)

University of California, Irvine

Introduction

�Context
�Matters of scale
�Distribution of software costs
�Differences from programming
�Product and process
�Elements of Science, Engineering, Management,

and Human Factors

University of California, Irvine

Context

Programming Engineering

Huge project
Teams

Build what they want
Family of products

Many parallel changes
Long-lived

Costly

Large consequences

Small project
You

Build what you want
One product

Few sequential changes
Short-lived
Cheap

Small consequences

University of California, Irvine

Matters of Scale

� High powered techniques not appropriate for all problems (Using an elephant gun to
kill a fly)

� The ICS 52 pedagogical problem:

– the problem must be small enough to complete in 10 weeks

– you work on the project by yourself
– you don't have to live with the consequences of your decisions
– your customers are too reasonable

University of California, Irvine

Distribution of Software Costs

Slides: Stephen R. Schach, Software Engineering, 2nd Edition Aksen Associations

University of California, Irvine

Differences from Programming

�Software engineering includes, e.g..:
–determining what to build
–organizing teams to cooperatively build
systems;

–analysis and testing
–lifecycle system engineering
–software architecture

University of California, Irvine

Product and Process

�Which is the more important corporate asset:
products or development processes?
–Products: the only thing that brings in revenue
–Process: the only thing you retain

»The asset that distinguishes you from your
competitor en route to a product

»The asset that gets you to your next product
»The asset that determines key properties of your

products

University of California, Irvine

Science,
Engineering, Management, Human Factors

�Science: empirical studies; theories characterizing
aggregate system behavior (e.g. reliability)

�Management: organizing teams, directing activities,
correcting problems

�Human factors: user task understanding and modeling;
ergonomics in user interface design

�Engineering: tradeoffs, canonical solutions to typical
problems
– Tradeoffs and representative qualities

» Pick any two:

�Good, fast, cheap
�Scalability, functionality, performance

University of California, Irvine

Software Engineering Principles

� Separation of concerns
– Divide problem into parts that can be dealt with separately.

» example: automobile fuel flow systems from tires and drive train

» divide and conquer (horizontally)

– Abstraction
» Divide problem into relevant parts and irrelevant details, and ignore the

irrelevant parts (more important and less important, w.r.t. the current set of
problem solving objectives)

» divide and conquer vertically

– Modularity
» Separating a problem into parts that can be dealt with separately, using

abstraction to determine "public" interfaces, dealing with the details as a private,
internal matter.

� Compositionality
– Allow two or more objects of a single kind to be composed such that the

result is an object of that kind

– "First-class citizens"

University of California, Irvine

Software Development
as a Problem Solving Activity

� Problem (application) characteristics

– Ill-formed

– Not completely specifiable?
– Subject to constant change

� Learning from other disciplines

– Architecture: Requirements,
sketch, blueprints, construction
» Strengths:

� Phasing of activities

� User input and review
� User looks at sketch, but only

minimally involved in construction

» Weaknesses:
� Lots of domain knowledge on the

part of the consumer

� We know what kind of change can
be made at each stage

� Progress easily measurable

– Legislation: Commission,
committee, congress,
bureaucracy
» Strengths:

� Intangible product

� Unforeseen consequences

� Difficult to measure progress

� Laws get "patched"
� Importance of careful reviews

highlighted

» Weakness of analogy:
� Difficult to test laws

� Not a rigorous discipline

University of California, Irvine

Software Processes

� Elements
– Activities (“phases”)

– Artifacts
» Can include process specifications

– Resources
» People (their time and cost)

» Tools (their time and cost)

� Relationships between the elements

– precedence, requires, produces, refines to
– ...

� Constraints

– Time
– Cost
– Qualities (repeatable process?)

Waterfall
Approach

� Waterfall Model (Winston Royce)
– Centered on defining documents

that describe intermediate products
– User feedback and changes

accommodated as an afterthought

Source: Schach, ibid..

University of California, Irvine

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

©Ian Sommerville 2000 Software Engineering, 6th editi

Start here

Spiral Model

Source: Barry Boehm, “A Spiral Model of Software Development and Enhancement, IEEE Computer, May 1988

� Spiral Model (Barry Boehm)
– Iterative development model
– Centered on risk analysis

– Directly includes prototyping and
user feedback

University of California, Irvine

Software Risk Items

Source: Barry Boehm, “A Spiral Model of Software Development
and Enhancement, IEEE Computer, May 1988

University of California, Irvine

SEI's Capability Maturity Model

Initial(1)

Repeatable (2)
Software configuration management
Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management

Defined (3)
Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

Managed (4)
Software quality management
Quantitative process management

Optimizing (5)
Process change management
Technology change management
Defect prevention

Disciplined
Process

Standard, consistent process

Predictable process

Continuously improving process

University of California, Irvine

A Comparison of Life Cycle Models

WeaknessesStrengthsModel

Totally unsatisfactorily for nontrivial
programs

Fine for small programs that do not
require much maintenance

Build-and-Fix

Delivered product may not meet
client’s needs

Disciplined approach

Document driven

Waterfall

Can be used only for large-scale
products

Developers have to be competent at risk-
analysis

Incorporates features of all the above
models

Spiral

Has not been widely used other
than in Microsoft

Future user’s needs are met

Ensures components can be
successfully integrated

Synchronize-
and-stabilize

Requires open architecture
May degenerate into build-and-fix

Maximizes early return on investment

Promotes maintainability

Incremental

A need to build twice
Cannot always be used

Ensures that delivered product meets
client’s needs

Rapid
Prototyping

University of California, Irvine

ICS 52 Software Life Cycle

� Requirements specification
– Interview customer (TA)

– Focus on “what”, not “how”

� Architectural and module design
– Based on provided “official” requirements specification
– Focus on interfaces

� Implementation
– Based on provided “official” design

– Focus on good implementation techniques

� Testing
– Based on provided “official” implementation

– Focus on fault coverage and discovery

