
University of California, Irvine 1

ICS 52: Introduction to Software
Engineering
Fall Quarter 2001

Professor Richard N. Taylor

Lecture Notes: CM, Management, and Evolution

Many slides taken from Ian Sommerville’s text…

http://www.ics.uci.edu/~taylor/ics52_fq01/syllabus.html

Copyright 2001, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine 2

A “Survival Fare” of Topics

�Configuration Management
�Maintenance and Evolution
�Project Management

University of California, Irvine 3

� New versions of software systems are created as they change
– For different machines/OS

– Offering different functionality
– Tailored for particular user requirements

� Configuration management is concerned with managing evolving software
systems

– System change is a team activity
– CM aims to control the costs and effort involved in making changes to a

system

Configuration management

University of California, Irvine 4

System families

Workstation
version

Unix
version

DEC
version

Initial
system

Mainframe
version

VMS
version

PC
version

Sun
version

University of California, Irvine 5

Configuration Hierarchy (for 1 family member)

PCL-TOOLS

EDIT

STRUCTURES

BIND

FORM

COMPILE MAKE-GEN

HELP

DISPLAY QUERY

AST-INTERFACEFORM-SPECS FORM-IO

CODEOBJECTS TESTS

University of California, Irvine 6

� All CM information should be maintained in a
configuration database

� This should allow queries about configurations to be
answered

– Who has a particular system version?
– What platform is required for a particular version?
– What versions are affected by a change to component X?

– How many reported faults in version T?
� The CM database should preferably be linked to the software being managed

 The configuration database

University of California, Irvine 7

� Version An instance of a system which is
functionally distinct in some way from other
system instances

� Variant An instance of a system which is
functionally identical but non-functionally
distinct from other instances of a system

� Release An instance of a system which is
distributed to users outside of the development
team

Versions/variants/releases

University of California, Irvine 8

Version identification

� Procedures for version identification should define an unambiguous way of
identifying component versions

� Three basic techniques for component identification

– Version numbering
– Attribute-based identification
– Change-oriented identification

University of California, Irvine 9

Version derivation structure

V1.0 V1.1 V1.2 V2.0 V2.1 V2.2

V1.1b V1.1.1

V1.1a

University of California, Irvine 10

Version management tools

� Version and release identification
– Systems assign identifiers automatically when a new version is submitted

to the system

� Storage management.
– System stores the differences between versions rather than all the

version code
� Change history recording

– Record reasons for version creation
� Independent development

– Only one version at a time may be checked out for change. Parallel
working on different versions

University of California, Irvine 11

Delta-based versioning

Version
1.0

Version
1.1

Version
1.2

Version
1.3

D1 D2 D3

Creation date

University of California, Irvine 12

System building

� Building a large system is computationally expensive and may take several
hours

� Hundreds of files may be involved

� System building tools may provide
– A dependency specification language and interpreter
– Tool selection and instantiation support

– Distributed compilation
– Derived object management

Make-oids

University of California, Irvine 13

Component dependencies

comp

scan.o

scan.c

defs.h

syn.o

syn.c

sem.o

sem.c

cgen.o

cgen.c

University of California, Irvine 14

� Maintenance to repair software faults
– Changing a system to correct deficiencies in the way meets

its requirements

� Maintenance to adapt software to a different operating environment
– Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation
� Maintenance to add to or modify the system’s functionality

– Modifying the system to satisfy new requirements

Types of maintenance

University of California, Irvine 15

Distribution of maintenance effort

Functionality
addition or

modification
(65%)

Fault repair
(17%)

Software
adaptation

(18%)

University of California, Irvine 16

Management of Software Engineering

� Planning
– Objectives

– Necessary resources
– How to acquire resources
– How to achieve goals

� Organizing
– From small group structure to large organizations

� Staffing: the key resource in software development

� Directing
– ensure continuing understanding and buy-in

� Controlling

– Measure performance and take corrective action when necessary

University of California, Irvine 17

Project Control: Task-based

� Work Breakdown Structures
– Hierarchical statement of the tasks to be performed

» a subset of a statement of the process which will be followed

� “Off-line” management schemes
– Gantt charts

» Bar charts where length of bar proportional to the length of time planned for the
activity

» Can be used as a statement of schedule
» Useful for analysis of resource deployment (e.g. maximum number of engineers

needed at any one time)

– PERT charts
» A network of activities showing dependencies (precedence relationships
» Exposes critical path

» Shows maximal possible parallelism in project execution

University of California, Irvine 18

Gantt Chart Example

Source: Ghezzi, et.al., pg. 436

University of California, Irvine 19

PERT Chart Example

Source: Ghezzi, et.al., pg.. 438

