
University of California, Irvine

ICS 52: Introduction to Software
Engineering

Fall Quarter 2001

Professor Richard N. Taylor

Lecture Notes

Week 2: Requirements Engineering

http://www.ics.uci.edu/~taylor/ics52_fq01/syllabus.html

Copyright 2001, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine

Requirements Engineering (the Activity)

� System engineering v. software engineering
– What role does software play within the full solution?

� Contract model v. participatory design
– Contract: carefully specify requirements, then contract out the

development
– Participatory: ultimate users, users' agents, and software engineers work

together throughout development

University of California, Irvine

Requirements Specification (the Document)

� Purpose
– Serve as the fundamental reference point between builder and buyer/"consumer "

(contract)
– Define capabilities to be provided, without saying how they should be provided

– Define constraints on the software
» e.g. performance, platforms, language

� Characteristics
– Unambiguous

» Requires precise, well-defined notations

– Complete: any system that satisfies it is acceptable
– Consistent

» There should be no conflicts or contradictions in the descriptions of the system facilities

– Verifiable (testable)

– No implementation bias (external properties only)
» "One model, many realizations"

Users of a
requirements
document

Use the requirements to
develop validation tests for
the system

Use the requirements
document to plan a bid for
the system and to plan the
system development process

Use the requirements to
understand what system is to
be developed

System test
engineers

Managers

System engineers

Specify the requirements and
read them to check that they
meet their needs. They
specify changes to the
requirements

System customers

Use the requirements to help
understand the system and
the relationships between its
parts

System
maintenance

engineers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5

University of California, Irvine

Lifecycle Considerations

� Serve as basis for future contracts

� Reduce future modification costs

– Identify items likely to change

– Identify fundamental assumptions

� Structure document to make future changes easy

– e.g. have a single location where all concepts are defined

University of California, Irvine

Requirements Volatility

Source: David Alex Lamb, Software Engineering, Planning for Change
Prentice Hall, 1988

University of California, Irvine

Content of a Requirements Specification

� Application context
– Describe the situations in which the software will be used. How will the

situation change as a result of introducing the software system?

– Identify all things (objects, processes, other software, hardware, people)
that the system may, or will, affect.

– Develop an abstraction for each of those things, characterizing their
properties/behavior which are relevant to the software system. ("World
model.")

– How might this context change?
� Functional requirements ("features")

– Identify all concepts (objects) that the system provides to the users.

– Develop an abstraction for each of those concepts, characterizing their
properties and functions which are relevant to the user.
» What is the system supposed to do?
» What is supposed to happen when something goes wrong?

“Object-oriented analysis”

University of California, Irvine

Contents of a
Requirements Specification, cont..

�Performance requirements: speed, space

�Environmental requirements: platform, language, ...

�Subsets/supersets

�Expected changes and fundamental assumptions

�Definitions; reference documents

University of California, Irvine

Non-functional requirement types

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5

University of California, Irvine

World Model (OOA) versus Simple Input/Output
Characterizations as Reqt.s Specs

� The application context may change because of extrinsic factors
� The software system modifies the usage context

� I/O is only meaningful in a specific context
� "Input" and "output" may not be simple concepts

– Cruise control systems: many sensors, complex conditions, and timing
constraints only understandable in the application context

University of California, Irvine

Techniques for Requirements Analysis

� Conduct interviews
� Build and evaluate prototypes

� Construct glossaries
� Separate concerns
� Focus on structure

– Abstraction and hierarchical decomposition
� Use precise notation (be careful with diagrams!)
� Ask yourself:

– Is it testable? Complete? Consistent?

University of California, Irvine

Canonical Diagram for Requirements Objects

Object Name

Description/Attributes

Operations it can be asked to perform
• op1
• op2
• ...

Requests made of other objects

Note: this will not be the appropriate notation for all application contexts!

Nested objects (hierarchical structure)

A place where mail can be delivered.
Name, Title, Street, City, State, ZipCode.
Operations:
(1) change any of the specified
attributes to have a particular value.
(2) read any or all of the attributes
(3) create/delete address

Mailing Address

A list of Mailing_Address objects.
Name (of list)
Operations:
(1) Add Mailing_Address to list
(2) Delete Mailing_Address from list
(3) Sort list
(4) “Print” list

Mailing List

Note: What about querying the list to
see if a particular address --- or part of
one -- is already a member?

An indexed set of places where chunks of
 ASCII data can be stored. Number of
indices, size of data currently stored in
each index
Operations:
(1) Fetch data at index
(2) Store data at index

Storage

Supports manipulation of multiple
mailing lists.
Operations:
(1) Union of two lists
(2) Intersection of two lists
(3) Subtraction of one list from another

Mailing List Set Ops

What the human user interacts with in
order to manipulate or obtain any info.
Attributes: media and modes
Operations:
(1) Login (authenticate user)
(2) Parse and execute command

User Interface

Note: requests between objects not shown. Neither the application
context nor the customer imposes any constraints on how these
objects may interact.

Note: are the values to the “puts” or received
from the “gets” strings? Only strings?

Mailing List Manager

A list of Mailing_Address objects.
Name (of list)
Operations:
(1) Add Mailing_Address to list
(2) Delete Mailing_Address from list
(3) Sort list
(4) “Print” list
(5) Combine (union) two lists
(6) Intersection of two lists --> list
(7) List2 = List1 - List0
(8) Store list
(9) Retrieve list

Mailing List

An indexed set of places where chunks of
 ASCII data can be stored. Number of
indices, size of data currently stored in
each index
Operations:
(1) Fetch data at index
(2) Store data at index

Storage

What the human user interacts with in
order to manipulate or obtain any info.
Attributes: media and modes
Operations:
(1) Login (authenticate user)
(2) Parse and execute command

User Interface

Mailing List Manager, Take 2

A place where mail can be delivered.
Name, Title, Street, City, State, ZipCode.
Operations:
(1) change any of the specified
attributes to have a particular value.
(2) read any or all of the attributes
(3) create/delete address

Mailing Address

Is this better, or worse?

Cruise Control System

Controls vehicle throttle

Operations:
(1) Apply throttle x%
(2) Get current throttle setting?
(3) Throttle pedal depressed?

Throttle Controller

Determines state of braking system

Operations:
(1) Brake pedal depressed?
(2) ABS active?

Brake Controller

Determine vehicle speed
Operations:
(1) Get speed

Vehicle Speed

Determine rate of rotation of front axle
Operations:
(1) Get rotation rate

Front axle sensor

Operations:

Cruise Controller

Determines state of CC buttons and levers
under driver’s control
Operations:
(1) Get button state 1
(2) Get button state 2
(3)...

Cruise Control Interface

Determine rate of rotation of rear axle
Operations:
(1) Get rotation rate
(2) Get rotation direction

Rear axle Sensor

Notes:

1. No transmission status?

2. CC doesn’t access axle
sensors directly

University of California, Irvine

Different Circumstances,
Different Techniques

�Finite state machines

–telephony examples

–http://www.uclan.ac.uk/facs/destech/compute/s
taff/casey/integ/mscfsm.htm

�Numerical systems

–e.g. matrix inversion package

University of California, Irvine

Acceptance Test Plan

� An operational way of determining consistency between the requirements
specification and the delivered system

� If the system passes the tests demanded by this plan, then the buyer has no
(legal) basis for complaint

� Develop a plan for conducting test to examine
– Functional properties
– Performance properties

– Adherence to constraints
– Subsets

� Representative technique: Property/test matrix: for each test case, what
properties/behaviors will be demonstrated?

University of California, Irvine

V-Model of
Development and Testing Activities

Specify Requirements

Requirements Review

Develop System/Acceptance Tests

Design Review

Develop Integration Tests

Develop Unit Tests

Code Review Unit Tests
Review/Audit

Integration Tests
 Review/Audit

System/Acceptance Tests Review

Execute System Tests

Design

Code Execute Unit Tests

Execute Integration Tests

University of California, Irvine

Incremental Development of Tests

�Acceptance test plan (and tests): develop during
requirements analysis

�Integration test plan (and test): develop during
system architecture and detailed design
specification

�Unit test plan (and tests): develop during
implementation

University of California, Irvine

ICS 52 Requirements Analysis Exercise

�Develop a requirements specification and
acceptance test plan for the class project

�TAs are the customer

