ICS 52: Introduction to Software
Engineering

Fall Quarter 2001
Professor Richard N. Taylor
Lecture Notes: Quality Assurance

http://www.ics.uci.edu/~taylor/ics52_fq01/syllabus.html

Copyright 2001, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

i:fl—d’i? ;,L“l

iCs

[rvine

Today’s Lecture

+ Quality assurance
+ An introduction to testing

University of California, Irvine

What Do These Have in Common?

+ First launch of space shuttle
+ Airbus 320

+ Audi 5000

¢ Mariner 1 launch

o AT&T telephone network

¢ Ariane 5

+ Word 3.0 for MAC

& X-ray machine

¢ NSA

University of California, Irvine

Impact of Failures

& Not just “out there”
— Space shuttle
— Mariner 1
— Ariane 5
— NSA
¢ But also “at home”
— Your car
— Your call to your mom
— Your homework
— Your hospital visit

Peter Neumann's Risks Forum: http://catless.ncl.ac.uk/Risks ‘

University of California, Irvine 4

Verification and Validation

+ Verification
— Ensure software meets specifications
— Internal consistency
— “Are we building the product right?”
+ Validation
— Ensure software meets customer’s intent
— External consistency
— “Are we building the right product?”

University of California, Irvine

Software Qualities

¢ Correctness + Evolvability

+ Reliability + Reusability

¢ Robustness + Portability

¢ Performance ¢ Understandability
o User friendliness + Interoperability
+ Verifiability + Productivity

+ Maintainability + Size

+ Repairability & Timeliness

¢ Safety + Visibility

University of California, Irvine

Quality Assurance

+ Assure that each of the software qualities is met
— Goals set in requirements specification
— Goals realized in implementation
& Sometimes easy, sometimes difficult
— Portability versus safety
¢ Sometimes immediate, sometimes delayed
— Understandability versus evolvability
& Sometimes provable, sometimes doubtful
— Size versus correctness

University of California, Irvine

An ldealized View of QA

Complete formal specification
of problem to be solved

* Correctness-preserving transformation

Design, in formal notation

* Correctness-preserving transformation

Code, in verifiable language

* Correctness-preserving transformation

Executable machine code

* Correctness-preserving transformation

Execution on verified hardware

University of California, Irvine

A Realistic View of QA

Mixture of formal and
informal specifications

* Manual transformation

Design, in mixed notation

* Manual transformation

Code, in C++, Java, Ada, ...

* Compilation by commercial compiler

Pentium machine code

* Commercial firmware

Execution on commercial hardwar%

University of California, Irvine

First Complication

Real needs

No matter how sophisticated the QA process, the
wmdPEODIEM Of creating the initial specification remains

of Califarnia Irvi

10

Second Complication

¢ Complex data communications
— Electronic fund transfer
Distributed processing
— Web search engine
+ Stringent performance objectives
— Air traffic control system
o Complex processing
— Medical diagnosis system

Sometimes, the software system is extremely
complicated making it tremendously difficult to perform QA

University of California, Irvine 11

Third Complication

Project
Management

/

Quality Assurance
Group

\

Development
Group

| Iniversity of California lry

It is difficult to divide the particular responsibilities
involved when performing quality assurance

|

Fourth Complication

& Quality assurance lays out the rules
— You will check in your code every day
— You will comment your code
— You will...
& Quality assurance also uncovers the faults
— Taps developers on their fingers
— Creates image of “competition”
& Quality assurance is viewed as cumbersome
— “Just let me code”

L@Quality assurance has a negative connotation

University

13

Available Techniques

& Formal program verification

+ Static analysis of program properties
— Concurrent programs: deadlock, starvation, fairness
— Performance: min/max response time

¢ Code reviews and inspections

¢ Testing

oMast tegchniques are geared towards verifying correctnessd

V-Model of Development and Testing

Develop Requirements Execute System Tests

Develop Acceptance Tests

Execute Integration Tests

Develop Integration Tests

Execute Unit Tests

Develop Unit Tests

University of California, Irvine _ 15

ICS 52 Life Cycle

Requirements
phase

University of California, Irvine

Implementation
phase

16

Implementation/Testing Interaction

=~/
0”7
J =
Implementation
(previous lecture) A J
N 2) v

University of California, Irvine

Testing
(this lecture)

17

Testing

& Exercise a module, collection of modules, or system
— Use predetermined inputs (“test case”)
— Capture actual outputs
— Compare actual outputs to expected outputs

+ Actual outputs equal to expected outputs
>
test case succeeds

+ Actual outputs unequal to expected outputs
>
test case fails

University of California, Irvine

18

Testing Terminology

+ Failure
— Incorrect or unexpected output
— Symptom of a fault
+ Fault
— Invalid execution state
— Symptom of an error
— May or may not produce a failure
& Error
— Defect or anomaly in source code
— Commonly referred to as a “bug”
— May or may not produce a fault

University of California, Irvine

19

Testing Goals

¢ Reveal failures/faults/errors
& Locate failures/faults/errors
& Show system correctness
— Within the limits of optimistic inaccuracy
& Improve confidence that the system performs as specified (verification)
& Improve confidence that the system performs as desired (validation)

Program testing can be used to show the presence
of bugs, but never to show their absence [Dijkstra]

UniveTstry ottt

20

Levels of Testing

+ Unit testing
— Testing of a single code unit
— Requires use of test drivers
+ Integration testing
— Testing of interfaces among integrated units
» Incremental
» “Big bang”
— Often requires test drivers and test stubs
& Acceptance testing
— Testing of complete system for satisfaction of requirements

University of California, Irvine

21

Test Tasks

¢ Devise test cases
— Target specific areas of the system
— Create specific inputs
— Create expected outputs

& Choose test cases

— Not all need to be run all the time
» Regression testing

¢ Run test cases
— Can be labor intensive

All in a systematic, repeatable, and accurate manner

University of California, Irvine 22

Two Approaches

¢ White box testing
— Structural testing
— Test cases designed, selected, and ran based on structure of the code
— Scale: tests the nitty-gritty
— Drawbacks: need access to source
+ Black box testing
— Specification-based testing
— Test cases designed, selected, and ran based on specifications
— Scale: tests the overall system behavior
— Drawback: less systematic

University of California, Irvine

23

Test Oracles

+ Provide a mechanism for deciding whether a test case execution succeeds
or fails

¢ Critical to testing
— Used in white box testing
— Used in black box testing
+ Difficult to automate
— Typically relies on humans
— Typically relies on human intuition
— Formal specifications may help

University of California, Irvine 24

Example

+ Your test shows cos(0.5) = 0.8775825619
& You have to decide whether this answer is correct?
¢ You need an oracle
— Draw a triangle and measure the sides
— Look up cosine of 0.5 in a book
— Compute the value using Taylor series expansion
— Check the answer with your desk calculator

University of California, Irvine

25

Use the Principles — Even in Testing

+ Rigor and formality
& Separation of concerns
— Modularity
— Abstraction
+ Anticipation of change
& Generality
¢ Incrementality

University of California, Irvine

26

