
University of California, Irvine 1

ICS 52: Introduction to Software
Engineering
Fall Quarter 2001

Professor Richard N. Taylor

Lecture Notes: Quality Assurance

http://www.ics.uci.edu/~taylor/ics52_fq01/syllabus.html

Copyright 2001, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine 2

Today’s Lecture

� Quality assurance
� An introduction to testing

University of California, Irvine 3

What Do These Have in Common?

� First launch of space shuttle
� Airbus 320

� Audi 5000
� Mariner 1 launch
� AT&T telephone network

� Ariane 5
� Word 3.0 for MAC
� X-ray machine

� NSA

University of California, Irvine 4

Impact of Failures

� Not just “out there”
– Space shuttle

– Mariner 1
– Ariane 5
– NSA

� But also “at home”
– Your car
– Your call to your mom

– Your homework
– Your hospital visit

Peter Neumann’s Risks Forum: http://catless.ncl.ac.uk/Risks

University of California, Irvine 5

Verification and Validation

� Verification
– Ensure software meets specifications

– Internal consistency
– “Are we building the product right?”

� Validation

– Ensure software meets customer’s intent
– External consistency
– “Are we building the right product?”

University of California, Irvine 6

Software Qualities

� Correctness
� Reliability
� Robustness

� Performance
� User friendliness
� Verifiability

� Maintainability
� Repairability
� Safety

� Evolvability
� Reusability
� Portability

� Understandability
� Interoperability
� Productivity

� Size
� Timeliness
� Visibility

University of California, Irvine 7

Quality Assurance

� Assure that each of the software qualities is met
– Goals set in requirements specification

– Goals realized in implementation
� Sometimes easy, sometimes difficult

– Portability versus safety

� Sometimes immediate, sometimes delayed
– Understandability versus evolvability

� Sometimes provable, sometimes doubtful

– Size versus correctness

University of California, Irvine 8

An Idealized View of QA

Design, in formal notation

Executable machine code

Execution on verified hardware

Code, in verifiable language

Complete formal specification
of problem to be solved

Correctness-preserving transformation

Correctness-preserving transformation

Correctness-preserving transformation

Correctness-preserving transformation

University of California, Irvine 9

A Realistic View of QA

Design, in mixed notation

Pentium machine code

Execution on commercial hardware

Code, in C++, Java, Ada, …

Mixture of formal and
informal specifications

Manual transformation

Manual transformation

Compilation by commercial compiler

Commercial firmware

University of California, Irvine 10

First Complication

Real needs

Actual
Specification

“Correct”
Specification

No matter how sophisticated the QA process, the
problem of creating the initial specification remains

University of California, Irvine 11

Second Complication

� Complex data communications
– Electronic fund transfer

� Distributed processing
– Web search engine

� Stringent performance objectives

– Air traffic control system
� Complex processing

– Medical diagnosis system

Sometimes, the software system is extremely
complicated making it tremendously difficult to perform QA

University of California, Irvine 12

Third Complication

It is difficult to divide the particular responsibilities
involved when performing quality assurance

Project
Management

Development
Group

Quality Assurance
Group

University of California, Irvine 13

Fourth Complication

� Quality assurance lays out the rules
– You will check in your code every day

– You will comment your code
– You will…

� Quality assurance also uncovers the faults

– Taps developers on their fingers
– Creates image of “competition”

� Quality assurance is viewed as cumbersome

– “Just let me code”

Quality assurance has a negative connotation

University of California, Irvine 14

Available Techniques

� Formal program verification
� Static analysis of program properties

– Concurrent programs: deadlock, starvation, fairness
– Performance: min/max response time

� Code reviews and inspections

� Testing

Most techniques are geared towards verifying correctness

University of California, Irvine 15

V-Model of Development and Testing

Develop Acceptance Tests
Acceptance Test Review

Requirements Review
Develop Requirements Execute System Tests

Develop Integration Tests
Integration Tests Review

Design Review
Design Execute Integration Tests

Develop Unit Tests
Unit Tests Review

Code Review
Code Execute Unit Tests

University of California, Irvine 16

ICS 52 Life Cycle

Requirements
phase
Verify

Design
phase
Verify

Implementation
phase
Test

Testing
phase
Verify

University of California, Irvine 17

Implementation/Testing Interaction

Implementation
(previous lecture)

Testing
(this lecture)

University of California, Irvine 18

Testing

� Exercise a module, collection of modules, or system
– Use predetermined inputs (“test case”)

– Capture actual outputs
– Compare actual outputs to expected outputs

� Actual outputs equal to expected outputs
 �
test case succeeds

� Actual outputs unequal to expected outputs
 �
test case fails

University of California, Irvine 19

Testing Terminology

� Failure
– Incorrect or unexpected output

– Symptom of a fault
� Fault

– Invalid execution state

– Symptom of an error
– May or may not produce a failure

� Error

– Defect or anomaly in source code
– Commonly referred to as a “bug”
– May or may not produce a fault

University of California, Irvine 20

Testing Goals

� Reveal failures/faults/errors
� Locate failures/faults/errors

� Show system correctness
– Within the limits of optimistic inaccuracy

� Improve confidence that the system performs as specified (verification)

� Improve confidence that the system performs as desired (validation)

Program testing can be used to show the presence
of bugs, but never to show their absence [Dijkstra]

University of California, Irvine 21

Levels of Testing

� Unit testing
– Testing of a single code unit

– Requires use of test drivers
� Integration testing

– Testing of interfaces among integrated units
» Incremental

» “Big bang”

– Often requires test drivers and test stubs

� Acceptance testing
– Testing of complete system for satisfaction of requirements

University of California, Irvine 22

Test Tasks

� Devise test cases
– Target specific areas of the system

– Create specific inputs
– Create expected outputs

� Choose test cases

– Not all need to be run all the time
» Regression testing

� Run test cases

– Can be labor intensive

All in a systematic, repeatable, and accurate manner

University of California, Irvine 23

Two Approaches

� White box testing
– Structural testing

– Test cases designed, selected, and ran based on structure of the code
– Scale: tests the nitty-gritty
– Drawbacks: need access to source

� Black box testing
– Specification-based testing
– Test cases designed, selected, and ran based on specifications

– Scale: tests the overall system behavior
– Drawback: less systematic

University of California, Irvine 24

Test Oracles

� Provide a mechanism for deciding whether a test case execution succeeds
or fails

� Critical to testing

– Used in white box testing
– Used in black box testing

� Difficult to automate

– Typically relies on humans
– Typically relies on human intuition
– Formal specifications may help

University of California, Irvine 25

Example

� Your test shows cos(0.5) = 0.8775825619
� You have to decide whether this answer is correct?

� You need an oracle
– Draw a triangle and measure the sides
– Look up cosine of 0.5 in a book

– Compute the value using Taylor series expansion
– Check the answer with your desk calculator

University of California, Irvine 26

Use the Principles — Even in Testing

� Rigor and formality
� Separation of concerns

– Modularity
– Abstraction

� Anticipation of change

� Generality
� Incrementality

