
University of California, Irvine 1

ICS 52: Introduction to Software
Engineering
Fall Quarter 2001

Professor Richard N. Taylor

Lecture Notes: Testing

http://www.ics.uci.edu/~taylor/ics52_fq01/syllabus.html

Copyright 2001, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine 2

Two Approaches

� White box testing
– Structural testing

– Test cases designed, selected, and ran based on structure of the source
code

– Scale: tests the nitty-gritty
– Drawbacks: need access to source

� Black box testing
– Specification-based testing
– Test cases designed, selected, and ran based on specifications

– Scale: tests the overall system behavior
– Drawback: less thorough

University of California, Irvine 3

Structural Testing

� Use source code to derive test cases
– Build a graph model of the system

» Control flow

» Data flow

– State test cases in terms of graph coverage

� Choose test cases that guarantee different types of coverage
– Node coverage
– Edge coverage

– Loop coverage
– Condition coverage
– Path coverage

University of California, Irvine 4

Example

}8

Node getSecondElement() {1

 return null;6

 if (head.next == null)5

 return null;4

 return head.next.node;7

 if (head == null)3

 Node head = getHead();2

1 32 4 5 6 7

University of California, Irvine 5

Example

}11

float homeworkAverage(float[] scores) {1

 total = total – min;9

 }8

 total += scores[i];7

 min = scores[i];6

 if (scores[i] < min)5

 for (int i = 0 ; i < scores.length ; i++) {4

 return total / (scores.length – 1);10

 float total = 0;3

 float min = 99999;2

1 3 7 82 4 5 6 9 10

University of California, Irvine 6

Node Coverage

� Select test cases such that every node in the graph is visited
– Also called statement coverage

» Guarantees that every statement in the source code is executed at least once

� Selects minimal number of test cases

1 3 7 82 4 5 6 9 10

Test case: { 2 }

University of California, Irvine 7

Edge Coverage

� Select test cases such that every edge in the graph is visited
– Also called branch coverage

» Guarantees that every branch in the source code is executed at least once

� More thorough than node coverage
– More likely to reveal logical errors

1 3 7 82 4 5 6 9 10

Test case: { 2, 1 }

University of California, Irvine 8

Other Coverage Criteria

� Loop coverage
– Select test cases such that every loop boundary and interior is tested

» Boundary: 0 iterations

» Interior: 1 iteration and > 1 iterations

– Watch out for nested loops

– Less precise than edge coverage
� Condition coverage

– Select test cases such that all conditions are tested
» if (a > b || c > d) …

– More precise than edge coverage

University of California, Irvine 9

Other Coverage Criteria

� Path coverage
– Select test cases such that every path in the graph is visited

– Loops are a problem
» 0, 1, average, max iterations

� Most thorough…

� …but is it feasible?

University of California, Irvine 10

Challenges

� Structural testing can cover all nodes or edges without revealing obvious
faults
– No matter what input, program always returns 0

� Some nodes, edges, or loop combinations may be infeasible
– Unreachable/unexecutable code

� “Thoroughness”

– A test suite that guarantees edge coverage also guarantees node
coverage…

– …but it may not find as many faults as a different test suite that only
guarantees node coverage

University of California, Irvine 11

More Challenges

� Interactive programs
� Listeners or event-driven programs

� Concurrent programs
� Exceptions
� Self-modifying programs

� Mobile code
� Constructors/destructors
� Garbage collection

University of California, Irvine 12

Specification-Based Testing

� Use specifications to derive test cases
– Requirements

– Design
– Function signature

� Based on some kind of input domain

� Choose test cases that guarantee a wide range of coverage
– Typical values
– Boundary values

– Special cases
– Invalid input values

University of California, Irvine 13

“Some Kind of Input Domain”

� Determine a basis for dividing the input domain into subdomains
– Subdomains may overlap

� Possible bases
– Size
– Order

– Structure
– Correctness
– Your creative thinking

� Select test cases from each subdomain
– One test case may suffice

University of California, Irvine 14

Example

}11

float homeworkAverage(float[] scores) {1

 total = total – min;9

 }8

 total += scores[i];7

 min = scores[i];6

 if (scores[i] < min)5

 for (int i = 0 ; i < scores.length ; i++) {4

 return total / (scores.length – 1);10

 float total = 0;3

 float min = 99999;2

University of California, Irvine 15

Possible Bases

� Array length
– Empty array

– One element
– Two or three elements
– Lots of elements

Input domain: float[]
Basis: array length

one

small

emptylarge

University of California, Irvine 16

Possible Bases

� Position of minimum score
– Smallest element first

– Smallest element in middle
– Smallest element last

Input domain: float[]
Basis: position of minima

somewhere in middle
first last

University of California, Irvine 17

Possible Bases

� Number of minima
– Unique minimum

– A few minima
– All minima

Input domain: float[]
Basis: number of minima

all data equal1 minimum
2 minima

University of California, Irvine 18

Testing Matrix

NotesExpected
output

Basis
(subdomain)

Test case
(input)

University of California, Irvine 19

homeworkAverage 1

Empty One Small Large

crashes!

86.0

87.3

92.5

(87.3)

(80,81,82,83,
 84,85,86,87,
 88,89,90,91)

(90,95,85)

x

x

x

0.0x()

NotesExpected
output

Basis: Array lengthTest case
(input)

University of California, Irvine 20

homeworkAverage 2

First Middle Last

88.0

88.0

97.5

(87,88,80,89)

(87,88,89,80)

(99,98,0,97,96)

x

x

x

88.0x(80,87,88,89)

NotesExpected
output

Basis: Position of minimumTest case
(input)

University of California, Irvine 21

homeworkAverage 3

One Several All

88.0

87.0

73.5

(87,86,86,88)

(88,88,88,88)

(99,98,0,97,0)

x

x

x

88.0x(80,87,88,89)

NotesExpected
output

Basis: Number of minimaTest case
(input)

