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Today’s Lecture

� Recurring and fundamental principles of
software engineering

� An introduction to requirements
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Recurring, Fundamental Principles

� Rigor and formality
� Separation of concerns

� Modularity
� Abstraction

� Anticipation of change
� Generality
� Incrementality

These principles apply to all aspects of software engineering
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Rigor and Formality

� Creativity often leads to imprecision and
inaccuracy
� Software development is a creative process
� Software development can tolerate neither

imprecision nor inaccuracy

� Rigor helps to…
� …produce more reliable products
� …control cost
� …increase confidentiality in products

� Formality is “rigor -- mathematically sound”
� Often used for mission critical systems
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Separation of Concerns

� Trying to do too many things at the same
time often leads to mistakes
� Software development is comprised of many

parallel tasks, goals, and responsibilities
� Software development cannot tolerate mistakes

� Separation of concerns helps to…
� …divide a problem into parts that can be dealt

with separately
� …create an understanding of how the parts

depend on/relate to each other
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Example Dimensions of Separation

� Time
� Requirements, design, implementation, testing, …
� Dial, receive confirmation, connect, talk, …

� Qualities
� Efficiency and user friendliness
� Correctness and portability

� Views
� Data flow and control flow
� Management and development
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Modularity

� Separation into individual, physical parts
� Decomposability

� Divide and conquer

� Composability
� Component assembly
� Reuse

� Understanding
� Localization

� Special case of separation of concerns
� Divide and conquer “horizontally”
� “Brick”-effect
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Modularity

Big

SmallSmall SmallSmall
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Abstraction

� Separation into individual, logical parts
� Relevant versus irrelevant details

� Use relevant details to solve task at hand
� Ignore irrelevant details

� Special case of separation of concerns
� Divide and conquer “vertically”
� “Iceberg”-effect
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Abstraction

Big

Abstraction

Details
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Anticipation of Change

� Not anticipating change often leads to high
cost and unmanageable software
� Software development deals with inherently

changing requirements
� Software development can tolerate neither high

cost nor unmanageable software

� Anticipation of change helps to…
� …create a software infrastructure that absorbs

changes easily
� …enhance reusability of components
� …control cost in the long run
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Generality

� Not generalizing often leads to continuous
redevelopment of similar solutions
� Software development involves building many

similar kinds of software (components)
� Software development cannot tolerate building

the same thing over and over again

� Generality leads to…
� …increased reusability
� …increased reliability
� …faster development
� …reduced cost
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Incrementality

� Delivering a large product as a whole, and in
one shot, often leads to dissatisfaction and a
product that is “not quite right”
� Software development typically delivers one final

product
� Software development cannot tolerate a product

that is not quite right or dissatisfies the customer

� Incrementality leads to…
� …the development of better products
� …early identification of problems
� …an increase in customer satisfaction

� Active involvement of customer
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Cohesion

VERSUS
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Coupling

VERSUS
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Provided Interface

Implementation
Required Interface

A Good Separation of Concerns, 1

Abstraction through the use of provided/required interfaces
Modularity through the use of components
Low coupling through the use of hierarchies
High cohesion through the use of coherent implementations
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Provided Interface
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A Good Separation of Concerns, 2

Abstraction through the use of provided/required interfaces
Modularity through the use of components
Low coupling through the use of a central “blackboard”
High cohesion through the use of coherent implementations
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Benefit 1: Anticipating Change

Separating concerns anticipates change
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Benefit 2: Promoting Generality

Separating concerns promotes generality
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Benefit 3: Facilitating Incrementality

Separating concerns facilitates incrementality
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Recurring, Fundamental Principles

� Rigor and formality
� Separation of concerns

� Modularity
� Abstraction

� Anticipation of change
� Generality
� Incrementality

These principles apply to all aspects of software engineering
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ICS 52 Life Cycle
Requirements

phase
Verify

Design
phase
Verify

Implementation
phase
Test

Testing
phase
Verify



©2001, University of California, IrvineLecture 2-1

Requirements Phase

� Terminology
� Requirements analysis/engineering

� Activity of unearthing a customer’s needs

� Requirements specification
� Document describing a customer’s needs

� Note: requirements address what a customer
needs, not what a customer wants
� A customer often does not know what they want
� Time-lag between initial desire and future need
� Long and arduous, sometimes educational,

process
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Requirements Analysis

� System engineering versus software
engineering
� What role does software play within the full

solution?
� Trend: software is everywhere

� Even in computer chips (TransMeta)

� Contract model versus participatory design
� Contract: carefully specify requirements, then

contract out the development
� Participatory: customers, users, and software

development staff work together throughout the
life cycle
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Techniques for Requirements Analysis

� Interview customer
� Create use cases/scenarios
� Prototype solutions
� Observe customer
� Identify important objects/roles/functions
� Perform research
� Construct glossaries
� Question yourself

Use the principles
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Requirements Specification

� Serves as the fundamental reference point
between customer and software producer

� Defines capabilities to be provided without
saying how they should be provided
� Defines the “what”
� Does not define the “how”

� Defines environmental requirements on the
software to guide the implementers
� Platforms
� Implementation language(s)

� Defines software qualities



©2001, University of California, IrvineLecture 2-1

Software Qualities

� Correctness
� Reliability
� Robustness
� Performance
� User friendliness
� Verifiability
� Maintainability
� Repairability
� Safety

� Evolvability
� Reusability
� Portability
� Understandability
� Interoperability
� Productivity
� Size
� Timeliness
� Visibility

These qualities often conflict with each other
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Why Spend a Lot of Time?

� A requirements specification is the source for
all future steps in the software life cycle
� Lays the basis for a mutual understanding

� Consumer (what they get)
� Software producer (what they build)

� Identifies fundamental assumptions
� Potential basis for future contracts

� Better get it right
� Upon delivery, some software is actually rejected

by customers

� Changes are cheap
� Better make them now rather than later
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Your Tasks

�� Read and study slides of this lecture
�� Read and study Chapter 2 and Chapter 3 of

Ghezzi, Jazayeri, and Mandrioli


