
©2001, University of California, IrvineLecture 2-1

ICS 52
Introduction to Software Engineering

Lecture Notes for Fall Quarter, 2001
André van der Hoek

Lecture 2-1

Copyright ©2001, André van der Hoek

Duplication of course material for any commercial purpose without the written permission of the lecturer
is prohibited.



©2001, University of California, IrvineLecture 2-1

Today’s Lecture

� Recurring and fundamental principles of
software engineering

� An introduction to requirements



©2001, University of California, IrvineLecture 2-1

Recurring, Fundamental Principles

� Rigor and formality
� Separation of concerns

� Modularity
� Abstraction

� Anticipation of change
� Generality
� Incrementality

These principles apply to all aspects of software engineering



©2001, University of California, IrvineLecture 2-1

Rigor and Formality

� Creativity often leads to imprecision and
inaccuracy
� Software development is a creative process
� Software development can tolerate neither

imprecision nor inaccuracy

� Rigor helps to…
� …produce more reliable products
� …control cost
� …increase confidentiality in products

� Formality is “rigor -- mathematically sound”
� Often used for mission critical systems



©2001, University of California, IrvineLecture 2-1

Separation of Concerns

� Trying to do too many things at the same
time often leads to mistakes
� Software development is comprised of many

parallel tasks, goals, and responsibilities
� Software development cannot tolerate mistakes

� Separation of concerns helps to…
� …divide a problem into parts that can be dealt

with separately
� …create an understanding of how the parts

depend on/relate to each other



©2001, University of California, IrvineLecture 2-1

Example Dimensions of Separation

� Time
� Requirements, design, implementation, testing, …
� Dial, receive confirmation, connect, talk, …

� Qualities
� Efficiency and user friendliness
� Correctness and portability

� Views
� Data flow and control flow
� Management and development



©2001, University of California, IrvineLecture 2-1

Modularity

� Separation into individual, physical parts
� Decomposability

� Divide and conquer

� Composability
� Component assembly
� Reuse

� Understanding
� Localization

� Special case of separation of concerns
� Divide and conquer “horizontally”
� “Brick”-effect



©2001, University of California, IrvineLecture 2-1

Modularity

Big

SmallSmall SmallSmall



©2001, University of California, IrvineLecture 2-1

Abstraction

� Separation into individual, logical parts
� Relevant versus irrelevant details

� Use relevant details to solve task at hand
� Ignore irrelevant details

� Special case of separation of concerns
� Divide and conquer “vertically”
� “Iceberg”-effect



©2001, University of California, IrvineLecture 2-1

Abstraction

Big

Abstraction

Details



©2001, University of California, IrvineLecture 2-1

Anticipation of Change

� Not anticipating change often leads to high
cost and unmanageable software
� Software development deals with inherently

changing requirements
� Software development can tolerate neither high

cost nor unmanageable software

� Anticipation of change helps to…
� …create a software infrastructure that absorbs

changes easily
� …enhance reusability of components
� …control cost in the long run



©2001, University of California, IrvineLecture 2-1

Generality

� Not generalizing often leads to continuous
redevelopment of similar solutions
� Software development involves building many

similar kinds of software (components)
� Software development cannot tolerate building

the same thing over and over again

� Generality leads to…
� …increased reusability
� …increased reliability
� …faster development
� …reduced cost



©2001, University of California, IrvineLecture 2-1

Incrementality

� Delivering a large product as a whole, and in
one shot, often leads to dissatisfaction and a
product that is “not quite right”
� Software development typically delivers one final

product
� Software development cannot tolerate a product

that is not quite right or dissatisfies the customer

� Incrementality leads to…
� …the development of better products
� …early identification of problems
� …an increase in customer satisfaction

� Active involvement of customer



©2001, University of California, IrvineLecture 2-1

Cohesion

VERSUS



©2001, University of California, IrvineLecture 2-1

Coupling

VERSUS



©2001, University of California, IrvineLecture 2-1

Provided Interface

Implementation
Required Interface

A Good Separation of Concerns, 1

Abstraction through the use of provided/required interfaces
Modularity through the use of components
Low coupling through the use of hierarchies
High cohesion through the use of coherent implementations

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface



©2001, University of California, IrvineLecture 2-1

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

A Good Separation of Concerns, 2

Abstraction through the use of provided/required interfaces
Modularity through the use of components
Low coupling through the use of a central “blackboard”
High cohesion through the use of coherent implementations

Implementation

Provided Interface



©2001, University of California, IrvineLecture 2-1

Benefit 1: Anticipating Change

Separating concerns anticipates change

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Implementation

Provided Interface



©2001, University of California, IrvineLecture 2-1

Benefit 1: Anticipating Change

Separating concerns anticipates change

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Implementation

Provided Interface



©2001, University of California, IrvineLecture 2-1

Benefit 2: Promoting Generality

Separating concerns promotes generality

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface



©2001, University of California, IrvineLecture 2-1

Benefit 3: Facilitating Incrementality

Separating concerns facilitates incrementality

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface

Implementation

Provided Interface

Provided Interface

Implementation
Required Interface

Provided Interface

Implementation
Required Interface



©2001, University of California, IrvineLecture 2-1

Recurring, Fundamental Principles

� Rigor and formality
� Separation of concerns

� Modularity
� Abstraction

� Anticipation of change
� Generality
� Incrementality

These principles apply to all aspects of software engineering



©2001, University of California, IrvineLecture 2-1

ICS 52 Life Cycle
Requirements

phase
Verify

Design
phase
Verify

Implementation
phase
Test

Testing
phase
Verify



©2001, University of California, IrvineLecture 2-1

Requirements Phase

� Terminology
� Requirements analysis/engineering

� Activity of unearthing a customer’s needs

� Requirements specification
� Document describing a customer’s needs

� Note: requirements address what a customer
needs, not what a customer wants
� A customer often does not know what they want
� Time-lag between initial desire and future need
� Long and arduous, sometimes educational,

process



©2001, University of California, IrvineLecture 2-1

Requirements Analysis

� System engineering versus software
engineering
� What role does software play within the full

solution?
� Trend: software is everywhere

� Even in computer chips (TransMeta)

� Contract model versus participatory design
� Contract: carefully specify requirements, then

contract out the development
� Participatory: customers, users, and software

development staff work together throughout the
life cycle



©2001, University of California, IrvineLecture 2-1

Techniques for Requirements Analysis

� Interview customer
� Create use cases/scenarios
� Prototype solutions
� Observe customer
� Identify important objects/roles/functions
� Perform research
� Construct glossaries
� Question yourself

Use the principles



©2001, University of California, IrvineLecture 2-1

Requirements Specification

� Serves as the fundamental reference point
between customer and software producer

� Defines capabilities to be provided without
saying how they should be provided
� Defines the “what”
� Does not define the “how”

� Defines environmental requirements on the
software to guide the implementers
� Platforms
� Implementation language(s)

� Defines software qualities



©2001, University of California, IrvineLecture 2-1

Software Qualities

� Correctness
� Reliability
� Robustness
� Performance
� User friendliness
� Verifiability
� Maintainability
� Repairability
� Safety

� Evolvability
� Reusability
� Portability
� Understandability
� Interoperability
� Productivity
� Size
� Timeliness
� Visibility

These qualities often conflict with each other



©2001, University of California, IrvineLecture 2-1

Why Spend a Lot of Time?

� A requirements specification is the source for
all future steps in the software life cycle
� Lays the basis for a mutual understanding

� Consumer (what they get)
� Software producer (what they build)

� Identifies fundamental assumptions
� Potential basis for future contracts

� Better get it right
� Upon delivery, some software is actually rejected

by customers

� Changes are cheap
� Better make them now rather than later



©2001, University of California, IrvineLecture 2-1

Your Tasks

�� Read and study slides of this lecture
�� Read and study Chapter 2 and Chapter 3 of

Ghezzi, Jazayeri, and Mandrioli


