
©2001, University of California, IrvineLecture 2-2

ICS 52
Introduction to Software Engineering

Lecture Notes for Spring Quarter, 2001
André van der Hoek

Lecture 2-2

Copyright ©2001, André van der Hoek

Duplication of course material for any commercial purpose without the written permission of the lecturer
is prohibited.



©2001, University of California, IrvineLecture 2-2

Today’s Lecture

� Contents of a requirements specification
� Example requirements session
� Acceptance test plan



©2001, University of California, IrvineLecture 2-2

Requirements Specification

� Serves as the fundamental reference point
between customer and software producer

� Defines capabilities to be provided without
saying how they should be provided
� Defines the “what”
� Does not define the “how”

� Defines environmental requirements on the
software to guide the implementers
� Platforms
� Implementation language(s)

� Defines software qualities



©2001, University of California, IrvineLecture 2-2

Structure

� Introduction
� Executive summary
� Application context
� Functional requirements
� Environmental requirements
� Software qualities
� Other requirements
� Time schedule
� Potential risks
� Future changes
� Glossary
� Reference documents



©2001, University of California, IrvineLecture 2-2

Introduction

� What is this document about?
� Who was it created for?
� Who created it?
� Outline



©2001, University of California, IrvineLecture 2-2

Executive Summary

� Short, succinct, concise, to-the-point,
description
� Usually no more than one page

� Identifies main goals
� Identifies key features
� Identifies key risks/obstacles



©2001, University of California, IrvineLecture 2-2

Application Context

� Describes the situation in which the software
will be used
� How will the situation change as a result of

introducing the software?
� “World Model”

� Identifies all things that the system affects
� Objects, processes, other software, hardware, and

people
� Provides an abstraction for each of those,

characterizing the properties and behaviors that
are relevant to the software system

� Identifies fundamental assumptions



©2001, University of California, IrvineLecture 2-2

Functional Requirements

� Identifies all concepts, functions, features,
and information that the system provides to
its users

� Provides an abstraction for each of those,
characterizing the properties and functions
that are relevant to the user
� What is the system supposed to do?
� What information does the system need?
� What is supposed to happen when something

goes wrong?

An approximate user interface is part of functional requirements



©2001, University of California, IrvineLecture 2-2

Environmental Requirements

� Platforms
� Hardware

� Operating systems, types of machines, memory size,
hard disk space

� Software
� CORBA, Jini, DCOM, 4GL, …

� Programming language(s)
� Standards



©2001, University of California, IrvineLecture 2-2

Software Qualities

� Correctness
� Reliability
� Robustness
� Performance
� User friendliness
� Verifiability
� Maintainability
� Repairability
� Safety

� Evolvability
� Reusability
� Portability
� Understandability
� Interoperability
� Productivity
� Size
� Timeliness
� Visibility



©2001, University of California, IrvineLecture 2-2

Other Requirements

� What about cost?
� What about documentation?
� What about manuals?
� What about tutorials?
� What about on-the-job training?
� What about requirements that do not fit in

any of the previous categories?



©2001, University of California, IrvineLecture 2-2

Time Schedule

� By when should all of this be done?
� Initial delivery date
� Acceptance period
� Final delivery date

� What are some important milestones to be
reached?
� Architectural design completed
� Module design completed
� Implementation completed
� Testing completed



©2001, University of California, IrvineLecture 2-2

Potential Risks

� Any project faces risks
� Boehm’s top ten risks (see lecture 1.2)
� It is important to identify those risks up-front so

the customer and you (!) are aware of them
� One of the requirements could be to explicitly address

the risks



©2001, University of California, IrvineLecture 2-2

Future Changes

� Any project faces changes over time
� It is important to identify those changes up-front

so the customer and you (!) are aware of them
� These changes could simply pertain to potential

future enhancements to the product
� One of the requirements could be to build the product

such that it can accommodate future changes



©2001, University of California, IrvineLecture 2-2

Glossary

� Precise definitions of terms used throughout
the requirements document



©2001, University of California, IrvineLecture 2-2

Reference Documents

� Pointers to existing processes and tools used
within an organization

� Pointers to other, existing software that
provide similar functionality

� Pointers to literature



©2001, University of California, IrvineLecture 2-2

Observations

� Document is structured to address the
fundamental principles
� Rigor
� Separation of concerns

� Modularity
� Abstraction

� Anticipation of change
� Generality
� Incrementality

� Not every project requires every section of
the document



©2001, University of California, IrvineLecture 2-2

Specification Methods

� Natural language
� Data flow diagrams

� Office automation

� Finite state machines
� Telephone systems
� Coin-operated machines

� Petri nets
� Production plants

� Formulas
� Matrix inversion package



©2001, University of California, IrvineLecture 2-2

Helpful Techniques

� Functional approach
� List of features
� Input and output
� “Recipe”

� World model approach
� List of objects
� Attributes and methods
� “Ingredients and their possible uses”

Both lead to a “shopping list” and “dinner”



©2001, University of California, IrvineLecture 2-2

Verification

� Is the requirements specification complete?
� Is each of the requirements understandable?
� Is each of the requirements unambiguous?
� Are any of the requirements in conflict?
� Can each of the requirements be verified?
� Are are all terms and concepts defined?



©2001, University of California, IrvineLecture 2-2

Acceptance Test Plan

� Accompanies a requirements specification
� Specifies, in an operational way, consistency

between the requirements specification and
the system that will be delivered

� Binds a customer to accept the delivered
system if it passes all the tests

� Covers all aspects of the requirements
specification



©2001, University of California, IrvineLecture 2-2

V-Model of Development and Testing

Develop Acceptance Tests
Acceptance Test Review

Requirements Review
Develop Requirements Execute System Tests

Develop Integration Tests
Integration Tests Review

Design Review
Design Execute Integration Tests

Develop Unit Tests
Unit Tests Review

Code Review
Code Execute Unit Tests



©2001, University of California, IrvineLecture 2-2

In-Class Example

“The french fries with mayonnaise place”



©2001, University of California, IrvineLecture 2-2

Your Tasks

�� Read and study slides of this lecture
�� Read Chapter 5 of Ghezzi, Jazayeri, and

Mandrioli
� Be familiar with some of the more formal

requirements analysis techniques
� This is a big chapter


