
 1 

On the Role of Learning Theories in Furthering Software Engineering Education 

Emily Oh Navarro and André van der Hoek 
Donald Bren School of Information and Computer Sciences 

University of California, Irvine 
Irvine, CA 92697-3425 USA 

emilyo@ics.uci.edu, andre@ics.uci.edu 

Abstract 
Learning theories describe how people learn. There is a large body of work concerning learning 

theories on which to draw, a valuable resource of which the domain of software engineering 

educational research has thus far not taken full advantage. In this chapter, we explore what role 

learning theories could play in software engineering education. We propose that learning 

theories can move the field of software engineering education forward by helping us to 

categorize, design, evaluate, and communicate about software engineering educational 

approaches. We demonstrate this by: (1) surveying a set of relevant learning theories, 

(2) presenting a categorization of common software engineering educational approaches in 

terms of learning theories, and (3) using one such approach (SimSE) as a case study to explore 

how learning theories can be used to improve existing approaches, design new approaches, and 

structure and guide the evaluation of an approach. 

 

Keywords: software engineering education, educational evaluation, simulation, educational 

technology, instructional technology, instructional evaluation, learning theories, educational 

games 

Introduction 
Learning theories are attempts to describe and understand the various ways in which people 

learn. They are an important resource for educational research, as they can both guide us in 

creating new educational approaches, and help us analyze and improve existing approaches. 

In this book chapter, we propose that learning theories, which have thus far been explicitly 

leveraged in software engineering education in only a minimal way, can actually play quite a 

significant role in this domain. Specifically, we believe that learning theories can serve to move 

the field of software engineering education forward by helping us to categorize, design, evaluate, 

and communicate about software engineering educational approaches. Categorizing approaches 

in terms of learning theories can help us to understand the approaches in relation to each other, 

understand how they fit together, and point out areas of untapped potential. New approaches can 

be designed to leverage certain theories whose potential is unfulfilled or known to be especially 

valuable in our domain. Learning theories can be used to evaluate approaches by helping 

structure experiments to look for the presence of these and other theories in the processes of 

learners. And, we can use our newfound knowledge to communicate in a common language—

that of learning theories—about different approaches and our experience with them. 

This chapter details this vision of principally using learning theories in the domain of 

software engineering education. We first briefly present a set of well-known (mainly 

constructivist) learning theories that are especially applicable. We then introduce a categorization 

of the major software engineering educational approaches to date in terms of the learning 

theories that they appear to have been designed around. Following this, we discuss the role 



 2 

learning theories can play in analyzing and improving the design of a software engineering 

educational approach (and designing new approaches), and focus on the analysis of one such 

approach (SimSE) as a case study. We then discuss how software engineering educational 

approaches can be evaluated in terms of learning theories, again using SimSE as a case study. 

We conclude with a summary in the final section. 

Background - Learning Theories 
To provide some background for our discussion on the role of learning theories in software 

engineering education, in this section we will briefly introduce the set of learning theories that 

we surveyed for the purposes of our analysis. We do not include here an exhaustive list of all 

learning theories with significant detail. Instead, the purpose of this section is to simply introduce 

some of the ones we have seen software engineering educational approaches centered around 

most frequently, and provide pointers to where more information about each one can be found. 

In addition, we will also briefly touch on implications and typical or possible applications of 

each theory for software engineering education. 

We chose the particular set of learning theories discussed here because of two criteria: 

relevancy to software engineering and orthogonality among the factors defining the theory. In 

other words, these theories are the ones we have seen to be most clearly and/or frequently 

embodied in the software engineering educational approaches that we surveyed. Furthermore, 

there exists a great deal of overlap among learning theories, and there are several learning 

theories that encompass a number of others. In these cases, we either group theories that have the 

same basic idea, and omit those that simply combine a number of theories.  

We acknowledge that these theories fall mainly into the constructivist paradigm (rather than 

the behaviorist or cognitive categories), however, given that constructivism is the most recently-

developed paradigm, and software engineering is a relatively new discipline, this is not 

surprising (it has been argued elsewhere, in fact, that the evolution of computer science 

education in the past decade or so has been significantly influenced by constructivism (Kolikant, 

2001)). While it is certainly true that most delivery methods generally contain a mix of various 

theories that fall into each of the three camps (constructivist, behaviorist, and cognitive), because 

the constructivist aspects are the most focused on, we have chosen to scope this survey and 

analysis to focus primarily on these theories. Surely similar surveys and analyses could be done 

with cognitive and behaviorist theories that would yield interesting results, however, such 

exercises are outside the scope of the one presented here. Nevertheless, some of the theories 

surveyed in this chapter do have elements of cognitive and/or behaviorist principles. For 

example, Learning through Failure involves a form of ―punishment‖ (failure) meant to 

―extinguish‖ a certain behavior. 

An additional issue that should be noted is the distinction between learning ―theories,‖ 

learning ―models,‖ and learning ―methods,‖ as well as their counterparts in the domain of 

instructional design (instructional design theories, models, and methods). Because the lines 

between these are blurred and often used interchangeably, it should be noted that in this paper 

several of the ―learning theories‖ we refer to can also be called by some of these other terms. 

When this is the case, we will point it out in our discussion of those theories. However, as is 

frequently done in the literature, we use the term ―learning theory‖ broadly, as a term that covers 

all of these categories. 

 One of  best-known learning theories is Learning by Doing, a theory based upon the premise 

that people learn a task best not by hearing about it, but by actually doing it (Dewey, 1916). The 



 3 

implication of this theory for instructional design is the following: the learner should be provided 

with ample opportunity to actually perform the activities they are meant to learn, rather than 

using passive mediums such as lectures and readings. In software engineering education, this 

translates to going beyond just lectures and reading assignments (although, for most any domain, 

a certain amount of such scaffolding is necessary to provide the learner with the required 

background knowledge to effectively participate in the learning by doing). Software engineering 

educators have recognized this, and now a standard component of nearly all software engineering 

courses is the class project—a small software engineering project that students must develop 

using some of the techniques learned in class.  

 Situated Learning (Lave, 1988) is an educational theory that builds upon the Learning by 

Doing approach. While Learning by Doing focuses on the specific learning activities that the 

student performs, the Situated Learning theory is concerned with the environment in which the 

learning by doing takes place. In particular, Situated Learning is based on the belief that 

knowledge is situated, being in large part a product of the activity, context, and culture in which 

it is developed and used. Therefore, the environment in which the student practices their newly 

learned knowledge should be ―authentic‖, resembling, as closely as possible, the environment in 

which the knowledge will be used in real life. A popular application of this theory in software 

engineering education focuses on incorporating aspects of realism (or ―authenticity‖) into the 

class project, such as using an industrial participant to play the role of the customer (Hayes, 

2002), using maintenance- or evolution-based projects (McKim & Ellis, 2004), or using large 

teams of people that are distributed across geographical locations (Favela & Pena-Mora, 2001). 

Like Situated Learning, Keller’s ARCS Motivation Theory (Keller, 1983) also focuses on 

motivating students to learn. However, rather than focusing on the physical environment in 

which they learn, Keller’s ARCS Motivation Theory concerns itself with producing certain 

feelings in the learner that are believed to promote learning. In particular, these feelings are 

attention, relevance, confidence, and satisfaction. 

 Attention: The attention and interest of the learner must be engaged. Proposed methods 

for doing so are: introducing unique and unexpected events; varying aspects of 

instruction; and arousing information-seeking behavior by having the learner solve or 

generate questions or problems. 

 Relevance: Learners must feel that the knowledge is relevant to their lives. The theory 

suggests that knowledge be presented and practiced using examples and concepts that 

are relevant to learners’ past, present, and future experiences. 

 Confidence: Learners need to feel personal confidence in the learning material. This 

should be done by presenting a non-trivial challenge and enabling them to succeed at it, 

communicating positive expectations, and providing constructive feedback. 

 Satisfaction: A feeling of satisfaction must be promoted in the learning experience. 

This can be done by providing students with opportunities to practice their newly 

learned knowledge or skills in a real or simulated setting, and providing positive 

reinforcements for success. 

Keller’s ARCS is technically considered an instructional design model that is rooted in 

various learning theories. Two of the most directly contributing theories are Andragogy 

(Knowles, 1984) and Expectancy-Value Theory (Fishbein & Ajzen, 1975). Andragogy concerns 

adult learners in particular, and focuses on their need for self-directed, relevant, hands-on 

learning. Expectancy-Value Theory states that in order for a learner to put forth the effort 

required to learn, they must both value the knowledge/task/exercise and expect that they can 



 4 

succeed at it. Because Keller’s ARCS combines these theories and provides more hands-on 

applicability than either theory alone, we have chosen to include it (rather than the theories it is 

based on) in our survey and analysis. 

While Keller’s ARCS could be applied in a number of different ways in software engineering 

education, in general it entails providing the students with attention-grabbing, realistic, hands-on 

assignments that pose a significant, yet doable challenge. One class of approaches that explicitly 

sets out to accomplish such goals is that in which the class project is made purposely open-ended 

and/or vague. This is done in two main ways: either by allowing the students to define their own 

requirements (giving students the pseudo-experience of new product development based on 

market research) (Navarro & van der Hoek, 2005b), or by allowing them to define their own 

process (giving students experience in not only following a process, but in designing the process 

that they follow) (Groth & Robertson, 2001). The stated purpose of these open-ended approaches 

is to mimic common, less-structured (authentic) real-world software engineering situations, 

giving the students more ownership of the project and therefore more interest in it, as well as a 

greater feeling of confidence and satisfaction when the project is completed. 

Model-Centered Instruction (Gibbons, 2001) (which is also considered an instructional 

design theory) says educators should center all learning activities around models of three types: 

models of environments, models of cause-effect systems, and models of human performance. 

Presentation of general concepts and theories should be kept to a minimum. Instead, Model-

Centered Instruction believes that knowledge is best learned by exploration of these models. In 

software engineering education, this translates to simulating realistic situations, presenting case 

studies, and assigning realistic problems for the students to solve. One software engineering 

educational approach that embodies this theory is the practice-driven one, in which the 

curriculum is largely lab- and project-based, and lectures are used only as supporting activities 

(Ohlsson & Johansson, 1995). 

The Discovery Learning theory (Bruner, 1967) takes a similar approach to Model-Centered 

Instruction in that it believes that an exploratory style of learning is best. Discovery Learning is 

based on the idea that an individual learns a piece of knowledge most effectively if they discover 

it on their own, rather than having it explicitly told to them. This theory encourages educational 

approaches that are rich in exploring, experimenting, doing research, asking questions, and 

seeking answers. Educational software engineering simulation approaches (Drappa & Ludewig, 

2000; Navarro & van der Hoek, 2005a) are specifically designed to facilitate this type of 

learning—no knowledge is made explicit in the simulation, as it is rather discovered by students 

experimenting with different approaches and seeing the effects of their decisions on the outcome 

of the simulation. These types of approaches are generally given as structured exercises and 

combined with other teaching methods (such as lectures, readings, and projects). Including this 

type of scaffolding has been found to be crucial in making Discovery Learning maximally 

effective (Kirschner et al., 2006; Roblyer, 2005). 

Along the same lines as the Discovery Learning theory is the Learning Through Failure 

theory (Schank, 1997). This theory is based on the assumption that the most memorable lessons 

are those that are learned as a result of failure. The theory argues that: (1) Learning through 

failure provides more motivation for students to learn, so as to avoid the adverse consequences 

that they experience firsthand when they do not perform as taught, and (2) Failure engages 

students, as they are motivated to try again in order to succeed. Proponents of the theory argue 

that students should be allowed to (and even set up to) fail to encourage maximal learning. 

Although Learning through Failure is usually applied to the realm of e-learning, there have also 



 5 

been some non-e-learning software engineering educational approaches in which the main 

avenue of learning is through failure. In these ―sabotage‖ approaches, the instructor purposely 

sets the students up for failure by introducing common real-world complications into projects 

(e.g., crashing hardware just before a deadline), the rationale being that students will then be 

prepared when these situations occur in their future careers (Dawson, 2000). 

The theory of Learning through Reflection is primarily based on Donald Schön’s work 

suggesting the importance of reflection activities in the learning process (Schön, 1987). In 

particular, Learning through Reflection emphasizes the need for students to reflect on their 

learning experience in order to make the learning material more explicit, concrete, and 

memorable. Some common reflection activities include discussions, journaling, or dialogue with 

an instructor (Kolb, 1984). One example of this in software engineering is (Tomayko, 1996), a 

practice-driven industrial partnership approach that incorporates weekly one-on-one mentoring 

sessions with a ―coach‖ to discuss each student’s performance and help them reflect on their 

experience. The game-based simulation described in (Drappa & Ludewig, 2000) and the 

industrial simulation described in (Nulden & Scheepers, 2000) also incorporate dialogue and 

reflection as post-simulation activities in which students analyze and discuss their simulation 

experience with a tutor or instructor, and reflect on what they have learned.  

Finally, the theory of Elaboration (Reigeluth & Rodgers, 1980) states that, for optimal 

learning, instruction should be organized in order of complexity, from least complex to most 

complex. Simplest versions of tasks should be taught first, followed by more complicated 

versions. This is a theory that is generally inherent to most curricula (as well as most other 

learning theories), as courses and topics are usually introduced in order of increasing complexity. 

In software engineering educational approaches, applying this theory can sometimes be difficult, 

as there is oftentimes no natural way to organize the information in terms of complexity (e.g., 

how can one do this for a class project?). One approach that has been able to do this is the 

industrial simulation approach described in (Collofello, 2000). In this approach, students are 

assigned very simple simulations to begin with, and the complexity of the simulations is 

incrementally increased as the students progress in their knowledge.  

As mentioned previously, what has been presented in this section is only a brief introduction 

to the relevant learning theories. There is much more detail to these theories than what we have 

discussed, detail which must be looked into further before one can effectively apply these 

theories to their educational approaches. Typically, subtleties are involved in each one, and care 

must be taken to pay attention to these details. 

Learning Theory-based Categorization of Existing 
Approaches 
One of the main ways that learning theories can be used in software engineering educational 

research is to provide the field with a way to analyze and categorize existing approaches, both 

independently and in relation to each other. Such a categorization can serve to help us understand 

how the different approaches fit together and create a picture of the field as a whole, so that areas 

of strengths, weaknesses, and untapped potentials can be unearthed. We have done such a 

categorization, which we will present in this section.  



 6 

Before creating this categorization, in order to organize our analysis we first surveyed the 

major software engineering educational approaches published in the past several years and found 

that they can be lumped into three broad groupings: realism, topical, and simulation (these 

groupings can be broken down further into sub-groupings, as shown in Table 1). Realism 

approaches are those that focus on making various aspects of the students’ project experience 

more closely resemble one they would encounter in the real world. Some of these have included 

industry participation (Beckman et al., 1997; Kornecki et al., 2003; Wohlin & Regnell, 1999), 

emphasizing non-technical skills such as marketing and project management (Gnatz et al., 2003; 

Goold & Horan, 2002), and focusing on making the nature and composition of the student teams 

that work on the project more realistic (e.g., making them very large (Blake, 2003) or composed 

of several sub-teams (Navarro & van der Hoek, 2005b)). Topical approaches aim to educate 

students in detail about a topic generally not covered in depth in mainstream textbooks and 

lectures. These approaches do not focus on specific delivery methods, but instead focus on the 

mere addition of the topic as a crucial component of an effective and complete education in 

software engineering. Some examples of such topics are formal methods (Abernethy & Kelly, 

2000), real-time software engineering (Kornecki, 2000), and specific software processes such as 

the Personal Software Process (Hilburn, 1999) or the Rational Unified Process (Halling et al., 

2002). Finally, simulation approaches are those that have students practice software engineering 

processes in a (usually) computer-based simulated environment. Within the realm of software 

engineering simulations, there are three main types: industrial simulations brought to the 

classroom (Collofello, 2000; Pfahl et al., 2000), game-based simulations (Drappa & Ludewig, 

2000; Navarro & van der Hoek, 2005a), and group process simulations (Nulden & Scheepers, 

2000; Stevens, 1989). 

Table 1: Grouping of Software Engineering Educational Approaches. 

Realism 53 Topical 48 Simulation 8 
Industrial Partnerships 16 Formality 3 Industrial 2 

- Modify real software 1 - Formal methods 2 Game-Based 4 

- Industrial advisor 1 - Engineering 1 Group Process 2 

- Industrial mentor/lecturer 2 Process (Specific) 21   

- Case study 5 - PSP 14   

- Real project / customer 7 - TSP 2   

Maintenance/Evolution 9 - RUP 3   

- Multi-semester 4 - XP 2   

- Single-semester 5 Process (General) 6   

Team Composition 13 - Process engineering 3   

- Long-term teams 1 - Project management 3   

- Large teams 3 Parts of Process 3   

- Different C.S. classes 1 - Scenario-based req. eng. 1   

- Different majors 2 - Code reviews 1   

- Different universities 2 - Usability testing 1   

- Different countries 1 Types of Software Eng. 8   

- Team structure 3 - Maintenance/Evolution 3   

Non-Technical Skills 2 - Component-based SE 2   

Open-Endedness 7 - Real-time SE 3   

- Requirements 2 Non-Technical Skills 7   

- Process 5 - Social/logistical skills 3   

Practice-Driven 3 - Interact w/ stakeholders 1   

Sabotage 3 - HCI 2   

  - Business aspects 1   

 



 7 

 To categorize these approaches in terms of learning theories, we carefully studied each one to 

determine which learning theories appear to have been applied (whether intentionally or 

unintentionally), and which learning theories have clear potential to be employed. The resulting 

categorization is presented in Table 2 as a matrix of approaches and the learning theories that 

they leverage. (For a complete discussion of this categorization, see (Navarro, 2005)—here we 

present only the highlights.) The presence of three stars in the table indicates that the approach 

embodies the particular theory, or is centered around it. The presence of two stars represents that 

the theory appears to be involved in the design of that type of approach, but is perhaps not an 

intrinsic part of it, and may not be involved in all approaches that fall within that type. The 

presence of one star indicates that there is an obvious potential for that particular type of 

approach to employ that learning theory, but there have been very few, or no known cases of it.  

Example: Simulation and Learning Theories 

As an example of how we analyzed each approach in terms of learning theories, in this section 

we will focus on the simulation category and walk through how we determined the applicability 

of each learning theory for these approaches. First of all, all aforementioned educational software 

engineering simulations allow students to learn software processes by participating in them 

(Learning by Doing), albeit virtually. This theory is central to the paradigm of educational 

simulations (hence, the three stars in the table). These simulations also employ Situated Learning 

by adding realism to the learning environment, although in different ways: Industrial simulations 

Table 2: Software Engineering Educational Approaches and the Learning Theories they Incorporate. 

 

L
ea

rn
in

g
 b

y
 D

o
in

g
  

S
it

u
at

ed
 L

ea
rn

in
g

 

K
el

le
r’

s 
A

R
C

S
 

M
o

d
el

-B
as

ed
 I

n
st

ru
ct

io
n
 

D
is

co
v

er
y

 L
ea

rn
in

g
 

L
ea

rn
in

g
 T

h
ro

u
g

h
 F

ai
lu

re
 

L
ea

rn
in

g
 T

h
ro

u
g

h
 R

ef
le

ct
io

n
 

E
la

b
o

ra
ti

o
n
 

Industrial Partnership – Real Project ** *** **    *  
Maintenance/Evolution ** ***     * ** 
Team Composition ** ***     *  
Open-Endedness  ** ** ***  ** ** *  
Non-Technical Skills ** **     *  
Practice-Driven ***   *** *** ** * * 
Sabotage ** **    *** *  

Topical ** * * * * * * * 
Simulation  *** ** *** * *** ** * ** 

 



 8 

add realistic factors in the form of real project data in the simulation model; Game-based 

simulations add realism by immersing the student in the role of a participant in a realistic game 

scenario; Group process simulations inject realism through the simulated characters that behave 

similarly to real-world participants. Because these realistic factors are artificial in that they are 

virtual (rather than in a real-life setting), we put two stars in the table for this theory. 

 Simulation approaches strongly fit with the Keller’s ARCS model of learning. In particular, 

they are specifically designed to promote attention, relevance, confidence, and satisfaction (and 

have been shown to do so in some cases) in the following ways:  

 Attention: A number of studies done with educational software engineering simulations 

have repeatedly shown that students find these simulations enjoyable, engaging, and an 

interesting challenge they are happy to take on (Baker et al., 2003; Dantas et al., 2004; 

Navarro & van der Hoek, 2005a; Sharp & Hall, 2000; Stevens, 1989). This is particularly 

true for game-based simulations. Clearly this is the result of the elements of surprise, 

humor, challenge, and fun that are integral to many game-based simulations. 

 Relevance: Because learners can experience firsthand how the knowledge they are 

learning is relevant in a real-world situation (the one that is portrayed in the simulation), 

simulation promotes a feeling of relevance to students’ future careers.  This relevance can 

be enhanced by the usage of real-world data in the model to make the simulation more 

realistic. Furthermore, as the theory suggests, relevance is enhanced even further if the 

educational approach builds on previous and present knowledge. Simulations that are 

used to demonstrate concepts that have already been communicated to the students in 

another form (e.g., lecture or text) directly address this.  

 Confidence: Simulations provide a non-trivial challenge that is also doable. As students 

are given the opportunity to succeed at a simulation, they will feel a sense of personal 

confidence in the learning material. This is especially true in game-based simulations, in 

which students have the additional benefit of feeling they have ―won the game.‖ 

 Satisfaction: As students are able to practice their knowledge and skills in a realistic (yet 

simulated) setting, seeing the positive consequences of applying their knowledge 

correctly promotes a true feeling of satisfaction. Again, game-based simulations add to 

this if the student is also rewarded with a high score or some other game-relevant 

measure of success. 

 Model-Based Instruction has not been utilized at all in simulation, but has obvious potential 

to be. In particular, simulations could be used as the model (realistic situation, case study, and 

problem, simultaneously) that instruction is centered around. In such a case, students would 

practice a simulation (or series of simulations) for each concept (or set of concepts) being taught. 

Simulations would allow for ample exploration—one of the basic tenets of Model-Based 

Instruction—as students could practice the same simulation multiple times, using a different 

approach each time, learning the consequences of various actions, and, as a result, learning a 

great deal about the process and concepts being simulated. 

 The exploratory quality of simulation in and of itself directly implements the Discovery 

Learning theory. The nature of simulation is highly conducive to allowing students to discover 

knowledge on their own, as they see phenomena played out in a simulation, and are encouraged 

to explore, experiment, do research, ask questions, and seek answers. 

 This type of exploratory learning is also inherently related to the Learning through Failure 

theory. As students explore the simulation and try different approaches, they are likely to fail at 

least a few times. In fact, one of the basic purposes of simulations is to allow students to ―push 



 9 

boundaries‖, try different approaches, and fail without fear of the drastic and severe 

consequences that would occur in a real-world setting. For example, a student who fails in a 

simulated software project would only have to worry about getting a low game score or seeing an 

unhappy simulated customer, while in the real world such a failure could cost millions of dollars 

or have even more serious consequences. 

 Learning through Reflection has also been incorporated into simulation approach, although 

only limitedly: with the game-based simulation SESAM (Drappa & Ludewig, 2000), and the 

industrial simulation described in (Nulden & Scheepers, 2000). As mentioned previously, 

dialogue and reflection sessions have been incorporated into these learning processes as post-

simulation activities. Some dialogue activity is also an inherent part of Problems and 

Programmers (Baker et al., 2003), the educational software engineering card game simulation. 

The face-to-face, competitive nature of this physical card game has been shown to promote rich 

and useful discussion between student opponents, regarding such topics as why they took the 

approach they did, the reasons behind one person’s win and another’s loss, and their reactions to 

unexpected events. 

 Finally, the Elaboration theory has also been only limitedly incorporated into simulation-

based software engineering educational approaches. In particular, Elaboration has only been 

leveraged in the process used with the industrial simulation described in (Collofello, 2000). This 

process consists of assigning students very simple simulations to begin with, and incrementally 

increasing the complexity of the simulations as the students progress in their knowledge. 

Categorization Highlights 

The first thing to notice in general from Table 2 is that, although learning theories are not often 

explicitly discussed in software engineering education research, they are indeed applicable in our 

domain. Whether consciously or unconsciously, people have been building approaches toward 

them in various ways. If we look at how the different learning theories fare with respect to the 

number of approaches that incorporate them, we can clearly see that our domain has focused the 

most on Learning by Doing and Situated Learning. This is not a surprise, given the strong 

emphasis on preparing students for the ―real world‖ that is intrinsic to the field. In contrast, 

Learning through Reflection is the most under-explored theory, but also has the most potential 

for greater use—every category of approach has the potential to leverage (or better leverage) this 

theory. 

If we then look at each approach with respect to the learning theories they incorporate, we 

can see that most of them apply multiple theories at once. The ―topical‖ category has one star for 

each theory because, since these approaches focus on the topic rather than on delivery methods, 

they theoretically have the potential to apply all of the theories, depending on the way that topic 

is taught. Simulation, on the other hand, directly incorporates, or has the potential to directly 

incorporate all of the theories considered in some way or another. While it certainly is not the 

case that any teaching method that addresses more learning theories than another is better than 

that other method (consider a combination of strategies put together haphazardly in some 

teaching method versus one well-thought-out and tightly-focused method cleverly leveraging one 

very good strategy), an approach that naturally addresses factors and considerations of multiple 

learning theories is one that is most definitely worth exploring. Simulation is such an approach, 

but one that has been significantly underexplored in software engineering education (Navarro, 

2005)—something that we are attempting to address with the approach described in the 

following section.  



 10 

Detailed Analysis/Design/Development of an Approach in 
terms of Learning Theories 
In addition to providing the field with a way to categorize and analyze existing software 

engineering educational approaches, learning theories can also help in developing new 

approaches and modifying existing approaches to be more effective. Categorizations such as the 

one presented in the previous section can help guide the design (or re-design) of such 

approaches, as areas for potential are highlighted.  

Case Study: The Design of SimSE 

In this section, we present a case study of a software engineering educational approach that was 

actually not explicitly designed with learning theories in mind. In looking back at our approach 

in light of learning theories, however, we can see that several of our key decisions made in its 

design are highly relevant to some of these theories. We can also see missed opportunities of 

ways we could have leveraged additional learning theories to make it more effective.  

The approach is SimSE, an educational game-based software engineering simulation 

environment. SimSE is a computer-based environment that facilitates the creation and simulation 

of realistic software process simulation models—models that involve real-world components not 

present in typical class projects, such as large teams of people, large-scale projects, critical 

decision-making, personnel issues, multiple stakeholders, budgets, planning, and random, 

unexpected events. In so doing, it aims to provide students with a platform through which they 

can experience many different aspects of the software process in a practical manner without the 

overarching emphasis on creating deliverables that is inherent in actual software development.  

 The graphical user interface of SimSE is shown in Figure 1. SimSE is a single-player game in 

which the player takes on the role of project manager and must manage a team of developers in 

order to successfully complete an assigned software engineering project or task. The player 

drives the process by, among other things, hiring and firing employees, assigning tasks, 

monitoring progress, and purchasing tools. At the end of the game, the player receives a score 

indicating how well they performed, and an explanatory tool provides them with a visual 

analysis of their game, including which rules were triggered when, a trace of events, and the 

―health‖ of various attributes (e.g., correctness of the code) over time (See Figure 2). 



 11 

 
Figure 1: SimSE Graphical User Interface 

 

 
Figure 2: Graphical Representation of a SimSE Game, Generated by the Explanatory Tool. 

 



 12 

To date, six SimSE game models exist: a waterfall model, an inspection model, an 

incremental model, an Extreme Programming model, a rapid prototyping model, and a Rational 

Unified Process model. For more information on SimSE, including its design, game play, and 

simulation models, see (Navarro, 2006). 

The idea of SimSE was originally motivated by the hypothesis that simulation can bring to 

software engineering education many of the same benefits it has brought to other educational 

domains. Specifically, we believed that software engineering process education could be 

improved by using simulation to allow students to practice managing different kinds of 

―realistic‖ software engineering processes. The constraints of the academic environment prevent 

students from having the opportunity to practice many issues surrounding the software 

engineering process in their course projects. Our approach therefore focused on providing this 

opportunity through the use of simulation. 

To guide us in the design of SimSE, we performed two activities: (1) a study of the domain 

of software engineering education to discover what its unique needs are, and (2) a survey of 

well-known principles for successful educational simulations from the research literature. The 

result of this was a specific set of key decisions that are listed here and discussed in light of the 

learning theory (or theories) that we later discovered related directly to them: 

1. Use of the Game Paradigm. We could have chosen to base our simulation approach on 

the industrial simulation or group process simulation paradigms mentioned previously, 

but instead we chose the game paradigm. It has been shown that game-like features such 

as graphics, interactivity, surprising random events, and interesting, life-like challenges 

are known to hold a student’s attention and promote a feeling of confidence and 

satisfaction as they succeed in the game (Ferrari et al., 1999). This directly corresponds 

to the Keller’s ARCS theory, which suggests that such qualities promote a highly 

effective learning experience. 

2. A Fully-Graphical User Interface. To make SimSE maximally engaging and visually 

realistic, we chose to design a fully graphical, rather than textual interface. As was shown 

in Figure 1, the focal point of this interface is a typical office layout in which the 

simulated process is ―taking place‖, including cubicles, desks, chairs, computers, and 

employees who ―talk‖ to the player through pop-up speech bubbles over their heads. In 

addition, graphical representations of all artifacts, tools, customers, and projects along 

with the status of each of these objects are visible. This decision to graphically portray 

simulated software engineering situations turned out to be strongly in line with the theory 

of Situated Learning—the learner is provided with a visual context that corresponds to 

the real world situations in which the learned knowledge would typically be used. 

3. A High Level of Interactivity. Keeping the attention of the learner engaged is not only 

done by making a user interface visually appealing, but also by continuously involving 

the learner. Thus, rather than designing SimSE as a continuous simulation that simply 

takes an initial set of inputs and produces some predictive results, we designed it in such 

a way that the player must make decisions and steer the simulation accordingly 

throughout the entire process. SimSE operates on a step-by-step, clock tick basis, and 

every clock tick the player has the opportunity to perform actions that affect the 

simulation. Keeping the learner continuously engaged and giving them ample opportunity 

to practice their skills and tackle challenges are tactics suggested by the Keller’s ARCS 

theory for promoting attention, relevance, confidence, and satisfaction.  



 13 

4. Customizable Simulation Models. SimSE includes a model builder tool and associated 

modeling approach that allow an instructor to build simulation models and generate 

customized games based on these models. This feature adds the (unanticipated) potential 

for using SimSE in a way that follows the theory of Elaboration—instructors could build 

models of varying complexity and use them in order of increasing complexity with 

students. Although we have not yet built such models with SimSE, it is in our future 

plans to do so, as we now know that this potential for greater effectiveness is there. 

5. An Explanatory Tool. An integral part of SimSE is its novel explanatory tool that 

provides players with a visual representation of how the simulated process progressed 

over time and explanations of the rules underlying the game. This feature promotes 

Learning through Reflection as it allows players to look back on their game and analyze 

their decisions and how those decisions affected the outcome. The explanatory tool 

output could also potentially be used as the focal point of a dialogue session between 

student and tutor/instructor.  

6. Complementary Usage of SimSE. Rather than design SimSE to be a standalone tool 

meant to replace standard course components such as lectures, readings, and projects, we 

instead designed it to be used complementary to them, and have used it in such a setting. 

The simulation models we have built require a basic set of knowledge and skills in order 

to play and learn from them effectively, knowledge that students conceivably obtain in 

lectures and readings. Thus, in essence, SimSE allows them to ―Learn by Doing‖ by 

learning through experience the lessons communicated through reading and lectures, as 

well as other lessons that are simply not adequately teachable through passive means. 

Linking the knowledge learned in SimSE to existing knowledge also promotes the feeling 

that what a student is learning is of relevance to them, a major tenet of Keller’s ARCS. 

7. Simulation models that provide a clear goal. SimSE allows the modeler to compose a 

―starting narrative‖ for the player that appears at the start of a game, and to which the 

player can refer back at any time during a game. In the models we have built, we have 

used this starting narrative to provide the player with the exact goals of the simulation, 

criteria for completion of these goals, and any hints or special notes that might help them 

along the way. Precisely defined objectives not only guide students through a simulation, 

but also pose a challenge that many students find hard to resist. Achieving the goal 

becomes a priority and Discovery Learning is employed as creative thinking is sparked in 

coming to an approach that eventually achieves that goal. 

8. Simulation models that are adequately challenging. We have built into our simulation 

models interesting situations that are adequately challenging (engaging students’ 

attention and making it likely that they learn through failure at times) but not impossible, 

promoting eventual success that leads to confidence in the learning material and 

satisfaction in the experience (central principles to Keller’s ARCS). 

Looking back on the design of SimSE in light of learning theories served to link some of our 

intuition in the design of SimSE to these theories, thereby increasing our confidence of being on 

the right path with our approach. In addition to this, it also revealed some missed opportunities 

that we could have taken advantage of, had we originally designed SimSE with learning theories 

in mind. For example, we could have better taken advantage of the Elaboration theory by 

designing our models in incrementally complex versions, and introducing them to students in 

order of increasing complexity. In our usage of SimSE in courses and in out-of-class studies, we 

also could have made reflection a more central and structured part of the approach by providing 



 14 

the student with explicit explanatory tool exercises to complete, exercises that would encourage 

the type of reflection that would help solidify the lessons learned in the simulation (currently, the 

student is simply given the explanatory tool, and decisions about how to use it are left up to 

them). As another example, we could have better incorporated aspects of authenticity (promoting 

Situated Learning) by including more random events (a characterizing feature of the real world) 

in our models. These types of events are only used sparingly in many of our models. 

Like most software engineering educational approaches, SimSE was not designed with 

learning theories in mind. However, by looking back on its design in light of learning theories, 

we have learned a great deal about how SimSE promotes learning and how it can be improved to 

foster greater learning, as we have seen in this section. 

Learning Theory-Centric Evaluation 
Although we did not explicitly use learning theories in SimSE’s initial design, we did use them 

as a central guiding factor in designing a major part of its evaluation. Validating that the theories 

an approach was designed to employ (or appear to employ) are actually employed, as well as 

discovering if an approach incorporates aspects of any additional theories, can be highly useful 

exercises—such data can be used to make that and other similar approaches more effective as 

they are tailored to exploit the characteristics known to promote each theory (van Eck, 2006). 

Thus, as part of SimSE’s evaluation, we performed an in-depth observational study that focused 

on investigating the learning processes of SimSE players to determine whether they exhibited 

behaviors indicative of various learning theories.  

Case Study: SimSE Evaluation Setup 

For this study, we used as subjects 11 undergraduate students who had passed the introductory 

software engineering course at the University of California, Irvine. This requirement was put in 

place so that they would have at least the basic understanding of software engineering concepts 

required to play SimSE. The study occurred in a one-on-one setting—one subject and one 

observer. Each subject was first given instruction on how to play SimSE, and was then observed 

playing SimSE for about 2.5 hours. In order to evaluate how well the explanatory tool achieves 

its goal of aiding Learning through Reflection, we had eight students play SimSE with the 

explanatory tool and three without. (Differences in the behavior, attitudes, and opinions of each 

group could then be compared, though clearly, not to the extent of being statistically significant.) 

While subjects were playing, their game play and behavior were observed and noted. Following 

this, the subject was interviewed about their experience for about 30 minutes. In addition to any 

spontaneous questions the observer formulated based on a particular subject’s actions or 

behavior during game play, all subjects were asked a set of standard questions. Several of these 

questions were designed to specifically detect the presence of one or more learning theories in 

the subject’s learning process. Some questions did not target a particular theory or set of theories, 

but were instead meant to evoke insightful comments from the subject from which various 

learning theories could be inferred, and from which general insights into the learning process 

could be discovered. Some samples from the standard set of questions are listed here, with the 

targeted learning theory (or theories) listed in parentheses afterwards when applicable. 

 To what do you attribute the change (or lack of) (improvement, worsening, fluctuation, 

steady state) of your score with each game? (Discovery Learning, Learning through Failure) 

 Do you feel you learned more when you “won” or when you “lost”? Why? What did you 

learn from each “win” or “loss”? (Discovery Learning, Learning through Failure) 



 15 

 When you lost, did you feel motivated to try again or not? Why? (Learning through Failure) 

 On a scale of 1 to 5, how much did playing SimSE engage your attention? Why? (Keller’s 

ARCS) 

 How much has your level of confidence changed in the learning material since completing 

this exercise? (Keller’s ARCS)  

 Did you feel that you learned any new software process concepts from playing SimSE that 

you did not know before? If so, which ones? (answer could be indicative of multiple theories) 

 If you feel you learned from SimSE, what do you believe it is about SimSE that facilitated 

your learning? (answer could be indicative of multiple theories) 

There were also some questions primarily designed for comparison between the subjects who 

used the explanatory tool and those who did not. These questions were aimed at discovering how 

the player went about figuring out the reasoning behind their scores, as well as how well they 

understood this reasoning. 

 Where do you think you went wrong in game 1/2/x? (Learning through Reflection) 

 Please describe the process that you followed to figure out the reasoning behind your score, 

or where you went wrong/right. (Learning through Reflection) 

Following the experiment, the interviewer’s observations and interview notes were analyzed 

to try to discover which behaviors and comments were indicative of the various learning 

theories, and how, as well as to discover any other insights about SimSE as a teaching tool that 

could be gained from this data.  

Evaluation Results 

The learning theory that was most clearly involved in every subject’s learning process was 

Discovery Learning. All subjects were able to recount at least a few lessons they learned from 

SimSE, and none of these lessons were ever told to them explicitly during their experience. 

Rather, they discovered them independently through exploration and experimentation within the 

game. Interestingly, although all subjects that played a model seemed to discover the same 

lessons (for the most part), no two subjects discovered them in the same way. Every subject 

approached the game with a different strategy, but came away with similar new knowledge, 

suggesting that SimSE can be applicable to a wide range of students that come from different 

backgrounds with different ideas and possibly, different learning styles. This is a central aspect 

of a student-centered theory like Discovery Learning. Since learning depends primarily on the 

learner and not the instructor, the learner is free to use their own style and ideas in discovering 

the knowledge, rather than being forced to adhere to a rigid style of instruction. 

Learning through Failure also seemed to be widely evident. Every subject seemed to take a 

―divide and conquer‖ approach to playing SimSE, isolating aspects of the model and tackling 

them individually (or a few at a time). When subjects described the progression of their games in 

the interviews, it was clear that the way they conquered each aspect was by going through at 

least one or two rounds of failure in which they discovered what not to do, and from this 

discovering a correct approach that lead to success. When asked explicitly about learning 

through failure, every subject stated that they learned when they failed, but the amount of 

learning they reported varied. Five subjects said they learned more from failure than success, two 

subjects said they learned more when they succeeded, and four subjects said they learned equally 

as much from failure and success. All but one subject said that they were motivated to try again 

after they failed. This motivation was also evident in the behavior of several subjects, as some, 

after the completion of one failed game, hurriedly and eagerly started a new one. One subject 



 16 

even tried to start a new game when the time for the game play portion of the experiment was up 

and he was already informed that it would be the last game.  

The Learning by Doing theory seemed to be involved in most of the subjects’ learning 

experience. Eight out of the 11 subjects made comments about their experience playing SimSE 

that hinted at aspects of Learning by Doing. Some of their comments included: 

 ―[SimSE helped me learn because it] puts you in charge of things. It’s a good way of 

applying your knowledge.‖ 

 ―[SimSE helped me learn because it is] interactive, not just sitting down and listening to 

something.‖ 

Comments indicative of Situated Learning were also rather frequent, mentioned by seven out 

of the 11 subjects. Some of these included: 

 ―[SimSE helped me learn because] it was very realistic and helped me learn a lot of realistic 

elements of software engineering, such as employees, budget, time, and surprising events.‖ 

 ―[One of the learning-facilitating characteristics of SimSE was] seeing a real-life project in 

action with realistic factors like employee backgrounds and dialogues.‖ 

Behaviors and comments suggestive of Keller’s ARCS Motivation Theory were also evident, 

although certain aspects of the theory came out stronger than others. To explain, let us look at the 

four aspects of the theory (attention, relevance, confidence, and satisfaction) individually. 

First, the attention of the subjects seemed to be quite engaged with SimSE. This was evident 

in their body language, the comments made both during game play and the interview, and their 

ratings of SimSE’s level of engagement. Many of them spent the majority of their time during 

game play sitting on the edge of their seats, leaning forward and fixing their eyes on the screen. 

There were head nods, chuckles in response to random events and character descriptions, shouts 

of ―Woo hoo!‖ after achieving a high score in a game, shaking of the head when things were not 

going so well for a player, and requests of, ―Can I try this one more time?‖ when the 

experiment’s allotted time for game play was coming to an end. Words some subjects used to 

describe SimSE in the interview were ―challenging‖, ―fun‖, ―interesting‖, ―addictive‖, and 

―amusing.‖ When explicitly asked how much SimSE engaged their attention, the students rated it 

quite high—4.1 on average out of five.  

Second, relevance was rated moderately high, but not as high as level of engagement. Five of 

the subjects rated SimSE’s relevance to their future experiences as ―pretty relevant‖ or ―very 

relevant‖, five described it as ―somewhat‖ or ―partially‖ relevant and one said it was not relevant 

at all. Although not explicitly asked about SimSE’s relevance to their past experiences, nearly all 

of the subjects mentioned that they used some of the knowledge they had learned in software 

engineering courses to come up with their strategies for playing the game, suggesting that there 

is also a relevance between their past experiences (learning the concepts in class) and their 

learning experience with SimSE.  

Third, most subjects felt their level of confidence in the learning material (the software 

process model simulated and software process in general) had increased at least somewhat since 

playing SimSE. Four subjects reported their level of confidence had changed ―a lot‖ or ―very 

much‖, five said it had changed ―somewhat‖, and two said it had not changed at all.  

Fourth, satisfaction was rated quite high by the subjects. Nine out of the 11 subjects reported 

that they were ―quite satisfied‖, ―very satisfied‖, ―fully satisfied‖, or ―pretty satisfied‖, and three 

subjects stated they were ―somewhat satisfied.‖ Most of the reported factors that contributed to a 

feeling of satisfaction pertained to a subject’s increasing success from game to game, although 



 17 

some also mentioned that the sheer fun and challenge of SimSE contributed to their satisfaction 

as well. 

The explanatory tool did seem to promote Learning through Reflection, to some extent. Most 

of the subjects that had access to the explanatory tool did make use of it, the duration of its use 

after most games ranging from five to 25 minutes. It was obvious that the subjects who did not 

have the explanatory tool (to whom we will henceforth refer as ―non-explanatory subjects‖) were 

significantly more confused and less confident about the reasoning behind their scores and how 

to improve than those who did have the explanatory tool (to whom we will henceforth refer as 

―explanatory subjects‖). All of the non-explanatory subjects expressed this, while only one 

explanatory subject stated such an opinion. The following are some of the comments made by 

the non-explanatory subjects: 

  ―I was trying to guess what I was doing wrong, so I probably chose the wrong areas that I 

was doing wrong, and then I tried to switch back to my original way and then I kind of forgot 

what that was and once I started trying to improve it, all of my little details started changing 

and I didn’t know what parts were causing my score to go lower.‖ 

 ―I felt like I knew, oh, that’s where I went wrong sometimes, like I should spend a little less 

time there, but a lot of times I was wrong about where it was I went wrong.‖   

On the other hand, most of the explanatory subjects’ comments expressed that the 

explanatory tool did, indeed facilitate their learning: 

 “[The explanatory tool] showed me why I was doing poorly—because of certain events that 

were happening.” 
 ―The rules [described in the explanatory tool] are really helpful—even if someone doesn’t 

know anything about software engineering I think the rules can teach you how to play the 

game.‖ 

Implications of Evaluation Results 

Evaluating SimSE in terms of learning theories provided us with several valuable insights into 

how SimSE helps students learn. In addition, it also helped us to discover ways to potentially 

make SimSE more effective. In this subsection, we describe how focusing on some of the 

theories in our evaluation provided us with knowledge that will help us maximize SimSE’s 

effectiveness. 

Learning through Failure: Overall, the challenge of receiving a ―failing‖ score and trying 

to improve it seemed to be a significant avenue of learning and a strong motivating factor of 

SimSE. This reinforced our notion that simulation models should be made challenging enough 

that students are set up to fail at times. It is these failures that provide some of the greatest 

opportunities for learning. By focusing on this aspect in our observations, we also discovered 

that one of our models (Rapid Prototyping) was not quite challenging enough, and students could 

sometimes get a good score without really learning the lessons. Thus, we have since added more 

challenges to this model, and will continue to build simulation models in the future that have an 

adequate level of challenge. 

 Learning by Doing: Several of the subjects’ comments mentioned the ability to put 

previously learned knowledge into practice as a learning-facilitating characteristic of SimSE. 

This validates our choice to use SimSE complementary to other teaching methods, so that it can 

fulfill this important role of being an avenue through which students can employ Learning by 

Doing as they do the things they only heard about in class.  



 18 

Situated Learning: The realistic elements in SimSE seem to add significantly to its 

educational effectiveness. Thus, it is important that we continue to include elements of the real 

world in our models, in order to situate students’ knowledge in a realistic environment. 

Elaboration: It became clear from our observations that one of our models (waterfall) is 

much too large and complex for a ―SimSE beginner.‖ (Although the waterfall process is a simple 

one, the corresponding SimSE model is quite complicated, incorporating several non-technical, 

managerial aspects.) By giving such a complex model to a student who has never played SimSE 

before, we were clearly violating the principles of the Elaboration theory. Thus, viewing this 

result in light of that theory taught us that such a model should not be introduced until the student 

has played other, simpler models first. 

Keller’s ARCS: Through this study we were able to discover what elements of SimSE and 

its models best hold students’ attention by noting when students appeared to be most engaged, 

and what kinds of things they commented about favorably in the interviews. For example, 

several students mentioned that the random events in the models (e.g., the customer changing 

their mind and requiring the team to rework part of the code) added an element of surprise and 

realism that kept things entertaining. Thus, we will continue to build these elements into our 

future models, as well as try to maximize them in our current models. We also discovered which 

elements students found un-engaging. For instance, several subjects thought the inspection 

model was boring and repetitive. Through the interviews, we were able to detect exactly what it 

was about the inspection model that made it this way, and have recently implemented changes 

that we anticipate will make it more interesting for future SimSE players. 

Learning through Reflection: The explanatory tool partially fulfills its goal of facilitating 

reflection, but it is clear that it needs to be improved. In particular, more help needs to be given 

to the user in generating meaningful, useful graphs, and the rule descriptions need to be more 

easily accessible. We have recently addressed these issues in our development by adding 

attributes to each model that are meant specifically for explanatory graphing purposes and by 

making the rule descriptions more accessible through the user interface. 

Learning theories can help structure evaluations by providing ideas about what the researcher 

should be looking for in the learning processes of students. As we have seen with SimSE, this 

can be done even if the approach was not designed with learning theories in mind. A careful 

retro-analysis of the approach’s design in terms of learning theories can reveal the aspects that a 

learning theory-centric evaluation should focus on. Conducting such an evaluation has the 

potential to both reveal the effectiveness of an approach, as well as guide future work in the area. 

Certainly, not every aspect of an approach can be evaluated this way—an evaluation focused 

on learning theories should only be one part of an evaluation plan. In addition to the evaluation 

described here, SimSE’s evaluation plan also included a pilot study, a comparative study, and in-

class studies, each of which was designed to evaluate different aspects of SimSE to form a 

comprehensive picture of its ability as a teaching tool (see (Navarro & van der Hoek, 2007) for 

more information about these studies). 

Summary  
Learning theories are an important educational resource of which the software engineering 

educational community has not yet taken full advantage. Learning theories can be used to 

categorize, design, evaluate, and communicate about software engineering educational 

approaches, providing a structured and informed way to move our domain forward with 

approaches that are effective and well-understood. We have shown one example of applying 



 19 

learning theories to software engineering education in our analysis and evaluation of SimSE. It is 

our hope that educators can take this example and apply it to other approaches and areas of 

software engineering education to create more effective teaching strategies that are rooted in 

educational theory. 

More Information 
More information about SimSE, including downloads, evaluations, and publications, are 

available at http://www.ics.uci.edu/~emilyo/SimSE/. 

Acknowledgements 
We would like to thank the reviewers of this chapter for their highly useful and constructive 

feedback. Effort partially funded by the National Science Foundation under grant number DUE-

0618869.  

References 
Abernethy, K., & Kelly, J. (2000). Technology transfer issues for formal methods of software 

specification. In S. A. Mengel & P. J. Knoke (Eds.), Proceedings of the thirteenth 

conference on software engineering education and training (pp. 23-31). Austin, TX: 

IEEE Computer Society. 

Baker, A., Navarro, E. O., & van der Hoek, A. (2003). Problems and programmers: An 

educational software engineering card game. In Proceedings of the 2003 international 

conference on software engineering (pp. 614-619). Portland, Oregon. 

Beckman, K., Khajenoori, K., Coulter, N., & Mead, N. R. (1997). Collaborations: Closing the 

industry-academia gap. IEEE Software, 14(6), 49-57. 

Blake, B. M. (2003). A student-enacted simulation approach to software engineering education. 

IEEE Transactions on Education, 46(1), 124-132. 

Bruner, J. S. (1967). On knowing: Essays for the left hand. Cambridge, Mass.: Harvard 

University Press. 

Collofello, J. S. (2000). University/industry collaboration in developing a simulation based 

software project management training course. In S. Mengel & P. J. Knoke (Eds.), 

Proceedings of the thirteenth conference on software engineering education and training 

(pp. 161-168). Austin, TX: IEEE Computer Society. 

Dantas, A. R., Barros, M. O., & Werner, C. M. L. (2004). A simulation-based game for project 

management experiential learning. In Proceedings of the 2004 international conference 

on software engineering and knowledge engineering. Banff, Alberta, Canada. 

Dawson, R. (2000). Twenty dirty tricks to train software engineers. In Proceedings of the 22nd 

international conference on software engineering (pp. 209-218): ACM. 

Dewey, J. (1916). Democracy and education. New York, NY: Macmillan. 

Drappa, A., & Ludewig, J. (2000). Simulation in software engineering training. In Proceedings 

of the 22nd international conference on software engineering (pp. 199-208): ACM. 

Favela, J., & Pena-Mora, F. (2001). An experience in collaborative software engineering 

education. IEEE Software, 18(2), 47-53. 

Ferrari, M., Taylor, R., & VanLehn, K. (1999). Adapting work simulations for schools. The 

Journal of Educational Computing Research, 21(1), 25-53. 



 20 

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to 

theory and research. Reading, Mass.: Addison-Wesley. 

Gibbons, A. S. (2001). Model-centered instruction. Journal of Structural Learning and 

Intelligent Systems, 14(4), 511-540. 

Gnatz, M., Kof, L., Prilmeier, F., & Seifert, T. (2003). A practical approach of teaching software 

engineering. In P. J. Knoke, A. Moreno & M. Ryan (Eds.), Proceedings of the sixteenth 

conference on software engineering education and training (pp. 120-128). Madrid, 

Spain: IEEE. 

Goold, A., & Horan, P. (2002). Foundation software engineering practices for capstone projects 

and beyond. In M. McCracken, M. Lutz & T. C. Lethbridge (Eds.), Proceedings of the 

fifteenth conference on software engineering education and training (pp. 140-146). 

Covington, KY, USA: IEEE. 

Groth, D. P., & Robertson, E. L. (2001). It's all about process: Project-oriented teaching of 

software engineering. In D. Ramsey, P. Bourque & R. Dupuis (Eds.), Proceedings of the 

fourteenth conference on software engineering education and training (pp. 7-17). 

Charlotte, NC, USA: IEEE. 

Halling, M., Zuser, W., Kohle, M., & Biffl, S. (2002). Teaching the unified process to 

undergraduate students. In M. McCracken, M. Lutz & T. C. Lethbridge (Eds.), 

Proceedings of the fifteenth conference on software engineering education and training 

(pp. 148-159). Covington, KY, USA: IEEE. 

Hayes, J. H. (2002). Energizing software engineering education through real-world projects as 

experimental studies. In M. McCracken, M. Lutz & T. C. Lethbridge (Eds.), Proceedings 

of the fifteenth conference on software engineering education and training (pp. 192-206). 

Covington, KY: IEEE. 

Hilburn, T. (1999). PSP metrics in support of software engineering education. In H. Saiedian 

(Ed.), Proceedings of the twelfth conference on software engineering education and 

training (pp. 135-136). New Orleans, LA, USA: IEEE. 

Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (Ed.), Instructional 

design theories and models: An overview of their current status. Hillsdale, NJ: Erlbaum. 

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction 

does not work: An analysis of the failure of constructivist, discovery, problem-based, 

experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86. 

Knowles, M. (1984). Andragogy in action: Applying modern principles of adult education. San 

Francisco, CA: Jossey Bass. 

Kolb, D. A. (1984). Experiential learning: Experiences as the source of learning and 

development. Englewood Cliffs, NJ, USA: Prentice-Hall International, Inc. 

Kolikant, Y. B. (2001). Gardeners and cinema tickets: High school students' preconceptions of 

concurrency. Computer Science Education, 11(3), 221-245. 

Kornecki, A. J. (2000). Real-time computing in software engineering education. In S. A. Mengel 

& P. J. Knoke (Eds.), Proceedings of the thirteenth conference on software engineering 

education and training (pp. 197-198). Austin, TX, USA: IEEE. 

Kornecki, A. J., Khajenoori, S., & Gluch, D. (2003). On a partnership between software industry 

and academia. In P. J. Knoke, A. Moreno & M. Ryan (Eds.), Proceedings of the sixteenth 

conference on software engineering education and training (pp. 60-69). Madrid, Spain: 

IEEE. 



 21 

Lave, J. (1988). Cognition in practice: Mind, mathematics, and culture in everyday life. 

Cambridge, UK: Cambridge University Press. 

McKim, J. C., & Ellis, H. J. C. (2004). Using a multiple term project to teach object-oriented 

programming and design. In T. B. Horton & A. E. K. Sobel (Eds.), Proceedings of the 

seventeenth conference on software engineering education and training (pp. 59-64). 

Norfolk, VA: IEEE. 

Navarro, E. O. (2005). A survey of software engineering educational delivery methods and 

associated learning theories (Technical Report No. UCI-ISR-05-5). Irvine, CA: 

University of California, Irvine. 

Navarro, E. O. (2006). SimSE: A software engineering simulation environment for software 

process education. Ph.D. Dissertation, University of California, Irvine, Irvine, CA. 

Navarro, E. O., & van der Hoek, A. (2005a). Design and evaluation of an educational software 

process simulation environment and associated model. In T. C. Lethbridge & D. Port 

(Eds.), Proceedings of the eighteenth conference on software engineering education and 

training. Ottawa, Canada: IEEE. 

Navarro, E. O., & van der Hoek, A. (2005b). Scaling up: How thirty-two students collaborated 

and succeeded in developing a prototype software design environment. In T. C. 

Lethbridge & D. Port (Eds.), Proceedings of the eighteenth conference on software 

engineering education and training. Ottawa, Canada: IEEE. 

Navarro, E. O., & van der Hoek, A. (2007). Comprehensive evaluation of an educational 

software engineering simulation environment. In H. Edwards & R. Narayanan (Eds.), 

Proceedings of the twentieth conference on software engineering education and training. 

Dublin, Ireland. 

Nulden, U., & Scheepers, H. (2000). Understanding and learning about escalation: Simulation in 

action. In Proceedings of the 3rd process simulation modeling workshop (prosim 2000). 

London, United Kingdom. 

Ohlsson, L., & Johansson, C. (1995). A practice driven approach to software engineering 

education. IEEE Transactions on Education, 38(3), 291-295. 

Pfahl, D., Klemm, M., & Ruhe, G. (2000). Using system dynamics simulation models for 

software project management education and training. In Proceedings of the 3rd process 

simulation modeling workshop (prosim 2000). London, United Kingdom. 

Reigeluth, C. M., & Rodgers, C. A. (1980). The elaboration theory of instruction: Prescriptions 

for task analysis and design. NSPI Journal, 19, 16-26. 

Roblyer, M. D. (2005). Integrating educational technology into teaching (4th ed.). Upper Saddle 

River, NJ: Prentice Hall. 

Schank, R. C. (1997). Virtual learning. New York, NY, USA: McGraw-Hill. 

Schön, D. (1987). Educating the reflective practitioner. San Francisco, CA, USA: Jossey-Bass. 

Sharp, H., & Hall, P. (2000). An interactive multimedia software house simulation for 

postgraduate software engineers. In Proceedings of the 22nd international conference on 

software engineering (pp. 688-691): ACM. 

Stevens, S. M. (1989). Intelligent interactive video simulation of a code inspection. 

Communications of the ACM, 32(7), 832-843. 

Tomayko, J. E. (1996). Carnegie Mellon's software development studio: A five year 

retrospective. In Proceedings of the ninth conference on software engineering education 

and training (pp. 119-129). Daytona Beach, FL, USA: IEEE. 



 22 

van Eck, R. (2006). Digital game-based learning: It's not just the digital natives who are restless. 

Educause Review, 41(2), 17-30. 

Wohlin, C., & Regnell, B. (1999). Achieving industrial relevance in software engineering 

education. In H. Saiedian (Ed.), Proceedings of the twelfth conference on software 

engineering education and training (pp. 16-25): IEEE Computer Society. 

 

 


