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A large difference exists between the software engineering skills taught at a typical 
university or college and the skills that are desired of a software engineer by a typical 
software development organization. At the heart of this difference seems to be the way 
software engineering is typically introduced to students: general theory is presented in a 
series of lectures and put into (limited) practice in an associated class project. While at 
first this seems to be a reasonable approach, practical, didactic, and timing reasons 
necessarily lead to the fact that such lectures and class projects often lack an in-depth 
treatment of the following five issues critical to any real-world software engineering 
project: 

• Software engineering is non-linear. 
• Software engineering often has multiple, conflicting goals. 
• Software engineering continuously involves choosing among multiple viable 

alternatives. 
• Software engineering involves multiple stakeholders. 
• Software engineering may exhibit dramatic consequences. 

In essence, all of these issues relate to the overall process of software engineering. In 
lectures, this process is difficult to teach because the ideas presented remain abstract and 
students participate only passively (simply sitting and listening to the instructor). 
Although class projects involve active participation by the students, time and scope 
constraints and the dominating focus on deliverables prevent the above issues from being 
highlighted and communicated to the students. Nonetheless, educating students in these 
process issues is essential to creating a full understanding of the depth and complicated 
nature of software engineering—preparing them for the future that lies ahead in industry. 
Essentially, then, what is needed in software engineering education is a way to teach the 
software process in a practical manner without the drawbacks of an actual class project. 
 
We believe that simulation/adventure games, such as SimCity, The Sims, Escape from 
Monkey Island, Myst, and Ultima Online, provide a tremendous amount of experience 
that can be leveraged to effectively illustrate the software process in the way that 
software engineering education today is lacking. In these games, players work towards 
achieving certain, sometimes conflicting goals, by living their “virtual lives” in such a 
way that they must make tradeoffs in choosing to work towards certain goals while 
ignoring others, much like the process of software engineering. Specifically, the player’s 
experience in these games exhibits all of the difficult-to-teach, yet critical characteristics 
of the software engineering process: 
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• They are non-linear. Multiple events happen at the same time; one must 
frequently interrupt certain activities to tend to others; and generally playing the 
game in the same way every time will not lead to the same results, due to the 
presence of several random factors in the simulated characters and events. 

• They involve multiple, conflicting goals. As explained previously, the games 
involve optimizing multiple goals that sometimes interfere with each other. 
Player’s actions inherently weigh certain goals as more important than others, and 
generally lead to certain goals that are attained and others that can only be 
partially fulfilled. 

• They allow for the exploration of alternatives. All games allow a player to save 
the state of the game, in effect providing a checkpoint ability that can be 
leveraged to explore different directions without committing oneself—simply 
returning to the saved state allows for exploration of a different alternative. 

• They generally involve multiple stakeholders. In some games, these 
stakeholders are represented by the different players that each try to optimize their 
own results. In other, single-player games, the game simulation provides the 
stakeholders. For example, SimCity has unions and Green Party representatives 
that the player must keep happy in making decisions regarding city planning. 

• They exhibit dramatic consequences. Although not real, the graphical 
illustration of these dramatic consequences (which range from the player actually 
being killed, to buildings being destroyed by natural disasters, to dirty houses 
being invaded by rats) has a profound impact on the player. 

In addition to sharing these process characteristics with software engineering, simulation 
has also proven to be an effective educational technique in other domains, including 
airplane pilot training, military training, and hardware design. In each of these cases, 
simulation provides significant educational benefits: valuable experience is accumulated 
without the potential of the dramatic consequences that may occur in case of failure. 
Moreover, unknown situations can be introduced and practiced, experience can be 
repeated, alternatives can be explored, and a general freedom of experimentation and 
“play” is promoted in the training exercise. 
 
We are currently designing and building an educational software engineering simulation 
environment that adopts simulation game technology to teach students the software 
process in accordance with the above objectives. We are in the early stages of our project, 
and believe the workshop can provide valuable input and feedback to the project—hence 
our desire to attend. 
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