Principles of Operating Systems

Fall 2018
Final

12/13/2018

Time Limit: 1:30pm — 3:30pm

Name (Print):

e Don’t forget to write your name on this exam.

e This is an open book, open notes exam. But no online or in-class chatting.
e Ask us if something is confusing.

e Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

e Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-

tially correct explanations might still receive partial credit.

e If you need more space, use the back of the pages; clearly indicate when you have done this.

e Don’t forget to write your name on this exam.

Problem | Points | Score
1 15
2 5
3 20
4 5
5 10
6 5
Total: 60

Principles of Operating Systems Final - Page 2 of 9

1. Pipes

Xv6 shell implements a pipe command (e.g., 1s | wc) with the following code:

8650 case PIPE:

8651 pcmd = (struct pipecmd*)cmd;
8652 if (pipe(p) < 0)
8653 panic("pipe");

// Point A
8654 if(fork1() == 0){
8655 close(1);
8656 dup(p[1]1);
8657 close(p[0]);
8658 close(p[1]);

// point B

8659 runcmd (pcmd>left) ;
8660 }
8661 if(fork1() == 0){
8662 close(0);
8663 dup (p[01);
8664 close(pl0]);
8665 close(p[1]1);
8666 runcmd (pcmd>right) ;
8667 }
8668 close(pl0]);
8669 close(pl[1]);

// point C
8670 wait();
8671 wait();
8672 break

Draw the connections between file descriptors, I/O devices and pipes at points A, B above.
Connections can be depicted with lines with arrows. The error is aligned with the direction of
data flow, i.e., if the file is written the error points at the file object.

Hint: pay attention to close() dup() calls before and after the point

Principles of Operating Systems

Final - Page 3 of 9

(a) (5 points) Point A

PARENT PROCESS

PARENT PROCESS

CHILD PROCESS

Principles of Operating Systems Final - Page 4 of 9

(c) (5 points) Point C

T T
st >
stdout 1 stdout
stderr 2 stderr

pl0] 3 plo]
" | ro—r -

stdin

PARENT PROCESS
(421)SS300Y¥d A1IHD

L

[o | stdin o
stdout g
stderr é
o0l |5
o |

ey

2. Processes and system calls

(a) (5 points) What is the first system call executed by xv6? Explain your answer.

exec(). It’s executed by the first process that uses a simple assembly sequence to simply
invoke exec() with the arguments needed to reload its address space with the “init” process.

Principles of Operating Systems Final - Page 5 of 9

3. Interrupts and context switch

(a) (5 points) When a user-program (a program that executes at current privilege level 3) is

preempted with an interrupt five registers are saved by the hardware: ESP, SS, EFLAGS,
CS, EIP. Why these five registers have to be saved, but others, e.g., EAX, ECX, etc.,
don’t?
These five change right away, e.g., SS and ESP is changed to point to the kernel stack,
EIP is changed to point to the interrupt handler entry, CS is changed to CS with privilege
level 0, EFLAGS might be changed too since some interrupt handlers are configured to
disable subsequent interrupts, etc.

(b) (5 points) During the context switch the code of the swtch() function visibly does not
save the EIP register. How is it saved and restored then during the context switch?
The EIP is pushed on the stack when swtch() is called. Since it’s pushed on the stack it’s
accessible as part of the struct context data structure, and it will be restored into the
EIP hardware register when swtch() executes the ret instruction.

Principles of Operating Systems Final - Page 6 of 9

(c) (5 points) The fork() system call returns “0” inside the child process. This return value

is passed to the child process from inside the fork() system call with the following line:

np—>tf->eax = 0

Explain how does this work, i.e., how the “0” value ends up being returned by the fork()
inside the user process.

For every process, the struct trapframe pointer tf points inside the kernel stack of
that process. struct trapframe is defined in such a way that its fields match the order
in which hardware and low-level code of xv6 (i.e., vectorXX, alltraps push and restore
values of the hardware registers used by the user process. When the new process is created
with fork() the kernel creates the trapframe data structure to make sure it is possible to
exit into that process when it is picked by the scheduler. Hence, np->tf->eax points to
the exact location of 4 bytes that will be restored into the EAX register on the return path
into the user-process when the kernel schedules and context switches into it. Since fork ()
puts “0” into the eax field of the trapframe data structure they will be restored from the
kernel stack into the EAX register. It also happens that x86 32bit calling convention used
by GCC compiler defines that EAX register contains the value returned from the function.
This is how “0” becomes the return value of the fork system call.

(5 points) What does the stack look inside the bar () function. Draw a diagram, provide
a short description for every value on the stack.

int bar(int a, void *buffer, int size) {

size | stack grows this way

possibly local variables
and spilled registers

Principles of Operating Systems Final - Page 7 of 9

4. File system
Xv6 lays out the file system on disk as follows:

log .

super

p header log inode bmap data
1 2 3 32 58 59

Block 1 contains the super block. Blocks 2 through 31 contain the log header and the log.
Blocks 32 through 57 contain inodes. Block 58 contains the bitmap of free blocks. Blocks 59
through the end of the disk contain data blocks.

(a) (5 points) Every file system transaction that changes the file system write one disk block
twice. What is this block (what’s its block number) and why is it written twice?

Block 2 is written twice as it contains the log header. First it is written to commit the log
and then it is written to mark the log as clear (after transactions are installed)

Principles of Operating Systems Final - Page 8 of 9

5. Synchronization

(a)

(5 points) Sleep has to check 1k != &ptable.lock to avoid a deadlock. Suppose the
special case when the following lines
if (1k !'= &ptable.lock) {
acquire(&ptable.lock);
release(1k);
}

are replaced with

release(1lk);

acquire(&ptable.lock);

Doing this would break sleep. How?

It is critical to hold the ptable.lock before releasing the lk lock that is passed as an
argument into sleep(). This is essential to avoid the lost wakeup problem — wakeup ()
always acquires the ptable.lock before waking up the waiting processes. If the special case
code is removed sooner or later the race will occur when the process that is going to sleep
will reach the line that releases the lock, at this point it will be preempted by the process
that is going to issue the wakeup() call, but since both the 1k and the ptable.lock are
released it will issue a wakup() call that will be lost by the preempted process that will
continue with the sleep when it takes its turn to run.

(5 points) Now Alice decides to put the following code instead of the original xchg() loop
in the acquire() function
for(;;) {
if (11k->locked)
{
lk->locked = 1;
break;
}
}

She boots xv6 on a multi-processor machine, explain what happens?

Now the two lines (and several assembly instructions that are involved in implementing
those lines): the one line that checks the locked filed and the line that sets it are not
atomic. Sooner or later it will result in a race when two processes will try to acquire the
same lock on two different CPUs.

Principles of Operating Systems Final - Page 9 of 9

6. cs143A. I would like to hear your opinions about cs143A, so please answer the following ques-
tions. (Any answer, except no answer, will receive full credit.)

(a) (1 point) Grade cs143A on a scale of 0 (worst) to 10 (best)?

(b) (2 points) Any suggestions for how to improve cs143A7?

(c¢) (1 point) What is the best aspect of cs143A7

(d) (1 point) What is the worst aspect of cs143A7

