
CS143A
Principles on Operating Systems

Discussion 06:
Instructor: Prof. Anton Burtsev

TA: Saehanseul Yi (Hans)
Nov 8, 2019 2 PM

Agenda

• Useful vim shortcuts
• tmux: terminal multiplexer
• ctags: generate an index file of names found in source code
• cscope: search source code

1saehansy@uci.edu

VIM Shortcuts

• Recap: normal mode vs. insert mode
• Navigation: h← j↓ k↑ l→
• Pros: you don’t have to move your hand to the arrow keys
• it takes some time to get used to it. It is totally fine to use arrow keys

• Page up/down: Ctrl+f/b
• Go to the beginning/end of the file: gg/G
• Current line in the center of screen: zz
• Go to line: :<number>

saehansy@uci.edu 2

VIM Shortcuts

• insert after the focus: a (vs. i) (will go into insert mode)
• add a new line below/up: o/O (will go into insert mode)
• undo/redo: u/Ctrl+r
• go to start/end of the line: ^/$
• delete a line/word/character: dd/dw/x
• copy a line: yy
• paste: p
• select lines/block: v/Ctrl+v (then usually ’y’ to copy or ‘x’ to delete)

saehansy@uci.edu 3

VIM Shortcuts

• replace one character/continuously: r/R
• replace a word: cw
• select a word and highlight: *
• No highlights: :noh
• move to next/previous highlighted keword: n/N
• search: /
• repeat commands: <any number> + shortcut

saehansy@uci.edu 4

VIM Configuration

• ~/.vimrc (‘~’ represents your home directory, i.e. /home/saehansy)
• below configs can be dynamically applied at runtime using :

(e.g. :set nu) (to cancel, usually put ! at the end. e.g. :set nu!)
• set nu: line numbers
• set smartindent: when you add a new line, it automatically indents
• set softtabstop=4

set tabstop=4
set shiftwidth=4
• set expandtab: insert spaces instead of tab
• set hlsearch: highlight keyword

saehansy@uci.edu 5

VIM Shortcuts

• Align source code: =
• Increase/decrease indent of a line: >>/<<
• split window vertically/horizontally: Ctrl+w, v/s
• Move between windows: Ctrl+w, hjkl(arrow keys also work)
• VIM can open multiple files

:buffers
• To select buffer: :buffer <buffer_num>

saehansy@uci.edu 6

TMUX: Terminal Multiplexer

saehansy@uci.edu 7

• Run multiple terminals in one window
• Resides in servers, saves the state you’re working on
• However, openlab machines are shared by many people
• When you don’t use it, please quit tmux for others

• Already installed in openlab machines
• type tmux or tmux a
• In tmux, everything revolves around ’prefix’ (default: Ctrl + b)
• To quit, prefix x then y or just type quit to exit your session
• Conf file: ~/.tmux.conf

Basic TMUX configuration

saehansy@uci.edu 8

• unbind C-b
set -g prefix C-a
bind C-a send-prefix
• bind C-q kill-window
• bind | split-window -h
• bind - split-window -v
• setw -g mode-mouse on

set -g mouse-select-pane on
set -g mouse-resize-pane on
set -g mouse-select-window on
set -g mouse-utf8 on

Changing prefix. I found C-a convenient for me.
You can use default(C-b) or something else

C- means Ctrl-

Quickly quit the window

Splitting window horizontally or vertically

You can use mouse to select a window,
resize the pane, and scroll

To send the program C-a(like xv6), press C-a C-a

Basic TMUX commands

saehansy@uci.edu 9

• prefix c : new window
• prefix n/p: switch to next/previous window
• prefix |(pipe) / - : split window vertically or horizontally
• prefix ← ↓ ↑ →: move between pane(split window)
• prefix q: kill the window
• prefix x: kill the pane
• prefix ,: rename window

Having trouble quitting xv6?

• open another terminal, and type
killall qemu-system-i386

saehansy@uci.edu 10

Ctags: Navigate code like a pro

• index names(functions, variables, …) into a file (tags)
• Unfortunately, openlab machines doesn’t have ctags

(We cannot use ‘apt install …’ because we are not superusers)
• Build from source code!
• git clone https://github.com/universal-ctags/ctags
• mkdir ~/local

cd ctags/
./autogen.sh
./configure --prefix=/home/<UCNetID>/local
make
make install

saehansy@uci.edu 11

configure – make – make install

For macOS users,
install brew, the package manager
(https://brew.sh)
brew install ctags

For Windows Linux Subsystem users,
sudo apt install ctags

https://github.com/universal-ctags/ctags
https://brew.sh/

Ctags: Navigate code like a pro

• Now ctags is installed in /home/<UCNetID>/local/bin
• Add this path to PATH in .bashrc(or .bash_profile)

export PATH=$HOME/local/bin:$PATH

saehansy@uci.edu 12

Ctags: Navigate code like a pro

• index names(functions, variables, …) into a file (tags)
• In the source code directory, run ‘ctags -R’
• (In vim) Place your cursor to target name, press Ctrl + [, go back Ctrl + T
• DISCLAIMER: it is not perfect, it doesn’t understand complex syntax

But most of the time, it works pretty well
• C MACRO: to the definition
• variable: to the definition
• function: to the definition

saehansy@uci.edu 13

Cscope: A Powerful code-searching tool

• Works outside vim (it invokes vim)
• Find all the C symbol references, definitions, calling/called reference, ...
• Also finds some arbitrary texts including comments
• Not installed in openlab machines..
• git clone https://github.com/portante/cscope
• ./configure --prefix=/home/<UCNetID>/local

make
make install

saehansy@uci.edu 14

For macOS users,
install brew, the package manager
(https://brew.sh)
brew install cscope For Windows Linux Subsystem users,

sudo apt install cscope

https://github.com/portante/cscope
https://brew.sh/

Cscope: A Powerful code-searching tool

• in the source code directory,
cscope -R
will create cscope.out
• Once you have cscope.out, you can use cscope -d

But if you have changed the source code, run cscope -R again
• To exit, press Ctrl+D

saehansy@uci.edu 15

