CS143A
Principles on Operating Systems
Discussion 09:

Instructor: Prof. Anton Burtsev
TA: Saehanseul Yi (Hans)
Dec 6, 2019 1pm

Agenda

* Implementing new system calls
* Threads

Files to modity for new system calls

SYSCALL(name) \
.globl name; \

* syscall.h — SYS_wrprotect

name: \
movl $SYS_ ## name, %eax;

similar to ‘goto’ syntax int $T_SYSCALL; \
ret

* usys.S — SYSCALL(wrprotect) <usys.S>

* syscall.c —sys_wrprotect
e user.h —wrprotect

<user.h>

<trap.c>
saehansy@uci.edu 2

Threads

* Lightweight Process (LWP)
* They share address space
* We don’t create new pages—faster creation

* Inter-process communication is costly:
* Through file
e Shared memory (much complicated than thread’s)
* pipe
* socket

* Faster context-switching

Creating threads

create process

->s2)) == 0){

saehansy@uci.edu

Creating threads

create process

->sz)) == 0){ allocate user virtual memory & copy pages
(we don’t need this)

saehansy@uci.edu

Creating threads

create process

->sz)) == 0){ allocate user virtual memory & copy pages
(we don’t need this)

saehansy@uci.edu

Creating threads

*np-stf =

b

return value.. where does eip point to now?

saehansy@uci.edu

Creating threads

*np-stf =

b

return value.. where does eip point to now?

copy file descriptors

saehansy@uci.edu

Creating threads

*np-stf =

b

return value.. where does eip point to now?

copy file descriptors

schedule the thread

saehansy@uci.edu

Creating threads

*np-stf =

b

return value.. where does eip point to now?

copy file descriptors

kind of a spinlock

schedule the thread

saehansy@uci.edu

return value.. where does eip point to now?

copy file descriptors

1. set eip

2. set esp (stack top)

3. push arguments and return address
to stack

kind of a spinlock

schedule the thread

11

Amdahl’s Law

* A program consists of two parts:
parallelizable vs. non-parallelizable(serial)
* If parallelizable takes 60% of execution time,
even if we use infinite number of threads to parallelize it,

p = 0.60 o= 0.40
0.60 0.40 n=1,s=1
0.30 0.40 n=2,s=143
0.2 0.40 n=3,s=167
0.15 0.40 n=4,s=182
0.12 0.40 n=5,s=192
0.10 0.40 n=6,s=2
0.033 0.40 n=18,s=2.31
0.012 0.40 n=50,s=2.43
0.0012 0.40 n=500,s=24¢

https://en.wikichip.org/wiki/amdahl%27s_law

saehansy@uci.edu

the program’s execution time is reduced by 60%

* maximum speedup 1/0.4 = 2.5x

32
-@- |deal Speedup
—o— 90% Parallel fraction i
~¥— 75% Parallel fraction ’,"
50% Parallel fraction A
s
I’,’
’I
Q o
) L’
3
o 16 A
Q. e
) +
I,’
'I
,I
8 y
’/
7’
’I
4 /l ¥
2
1 = | ' 3 T T
12 4 8 16 32
Number of Processors
Parallel and High Performance Computing(Maning) 12

Race condition (Data race)

Parent
a=0;
Thread #1 Thread #2
b=a++; b=a++;
Thread 1 Thread 2 Memory Value
read 0
increment 0
write 1
read 1
increment 1
write 2

Thread#l’s b: 1
Thread#2’s b: 2

saehansy@uci.edu

13

Race condition (Data race)

Parent
a=0;
Thread #1 Thread #2
b=a++; b=a++;
Thread 1 Thread 2 Memory Value
read 0
increment 0
write 1
read 1
increment 1
write 2

Thread#l’s b: 1
Thread#2’s b: 2

Thread 1 Thread 2 Memory Value
read 0
read 0
increment 0
write 1
increment 1
write 1

saehansy@uci.edu

14

Race condition (Data race)

Parent
a=0;
Thread #1 Thread #2
b=a++; b=a++;
Thread 1 Thread 2 Memory Value
read 0
increment 0
write 1
read 1
increment 1
write 2

Thread#l’s b: 1
Thread#2’s b: 2

Thread 1 Thread 2 Memory Value
read 0
read 0
increment 0
write 1
increment 1
write 1

saehansy@uci.edu

Thread#1l’s b: 1
Thread#2’s b: 1

15

Race condition: Atomic operations

Parent
a=0;
Thread #1 Thread #2
b=a++; b=a++;
Process 1 Process 2 Memory Value
atomic_inc 1
atomic_inc 2

atomic_inc = read + inc + write

Thread#l’s b:1
Thread#2’s b: 2

saehansy@uci.edu

Race condition: Atomic operations

Parent
a=0;
Thread #1 Thread #2 * Special instructions
b=a++; b=a++; ¢ e.g.xchg
temp = a;
Process 1 Process 2 Memory Value 3=b: +— temp = 3;
atomic_inc 1 b = temp; a=b;
b =temp;
atomic_inc 2

atomic_inc = read + inc + write

Thread#l’s b: 1
Thread#2’s b: 2

saehansy@uci.edu

17

Race condition: Atomic operations

Parent
a=0;
Thread #1 Thread #2 * Special instructions
b=a++; b=a++; ¢ e.g.xchg
temp = g;
Process 1 Process 2 Memory Value 3=b: +— temp = 3;
atomic_inc 1 b=temp; o b;
b =temp;
atomic_inc 2
atomic_inc = read + inc + write
Lock()
... (Critical section)
Unlock()

Thread#l’s b: 1
Thread#2’s b: 2

saehansy@uci.edu

void Lock()

{

}

while (lock ==1);
lock = 1;

void Unlock()

{
}

lock = 0;

18

Race condition: Atomic operations

Parent
a=0;
Thread #1 Thread #2 * Special instructions
b=a++; b=a++; e e.g.xchg
temp = a;
Thread 1 Thread 2 Memory Value a=p ©—temp=3a;
atomic_inc 1 b = temp; a=b;
b =temp;
atomic_inc 2
atomic_inc = read + inc + write
Lock()
... (Critical section)
Unlock()

Thread#l’s b: 1
Thread#2’s b: 2

saehansy@uci.edu

void Lock()

{

}

Spinning!

while (lock ==1); >

lock = 1;

void Unlock()

{
}

lock = 0;

19

Race condition: Atomic operations

* Spinlock uses CPU continuously void Lock() Spinning!
: |
* It will take portion of CPU utilization while (lock ==1); =D
lock = 1;
* Degrades performance of other threads/process) -

void Unlock()

{
lock = 0;

}

Race condition: Atomic operations

* Spinlock uses CPU continuously void Lockf) (L
* It will take portion of CPU utilization ! while (lock ==1); &

* Degrades performance of other threads/process) k=t

* Why don’t we make it sleep while waiting? void Unlock()

{
lock = 0;

}

Race condition: Atomic operations

* Spinlock uses CPU continuously void Lockf) (L
* It will take portion of CPU utilization ! while (lock ==1); &

* Degrades performance of other threads/process) k=t

* Why don’t we make it sleep while waiting? void Unlock()

{
lock = 0;

}

Race condition: Atomic operations

* Spinlock uses CPU continuously void Lock()
* It will take portion of CPU utilization { while (lock ==1)
* Degrades performance of other threads/process | Vlie'dl()?
ock = 1;
* Why don’t we make it sleep while waiting? }
= Mutex (mutually exclusive) T T
] created \ ' terminated
starts\.--i --------- é -----

(or enqueues)

preempted or yields

chosen by a scheduler

woken up by an event sleeps waiting for events

Race condition: Atomic operations

* Spinlock uses CPU continuously void Lock()

* It will take portion of CPU utilization { while (lock ==1)

* Degrades performance of other threads/process | Sl'ferl’(l)i
ock=1;

* Why don’t we make it sleep while waiting? }

= Mutex (mutually exclusive) T T

* xv6 doesn’t have yield() so we use ey S

starts

sleep() to mimic the behavior (or enqueues) i

preempted or yields

chosen by a scheduler

woken up by an event sleeps waiting for events

Semaphore: Producer--Consumer

Semaphore: Producer--Consumer

|
|
.4
|
.8

|
)

Semaphore: Producer--Consumer

Semaphore: Producer--Consumer

Semaphore: Producer--Consumer

|
LOCK

|

b
|

Semaphore: Producer--Consumer

|
LOCK

|

—.
=

]
LOCK
—a..

|
&

sem_init: initialize counter
(~ # of books)

sem_wait: if counter >0,
decrease by 1

if counter == 0, wait until it is
greater than O

sem_post: increase counter
by 1

HINT: counter should be in
critical section.
You can also use cond var

Conditional Variable: Producer--Consumer

|
LOCK

|

—.
=

]
LOCK
—a..

|

“—jii!!.

Conditional Variable: Producer--Consumer

|
LOCK

\2ZZ

—.
=

]
LOCK
—a..

|

“—jii!!.

Conditional Variable: Producer--Consumer

|
LOCK

\2ZZ

—.
=

]
LOCK
—a..

|

“—jii!!.

saehansy@uci.edu

33

Conditional Variable: Producer--Consumer

* Create another variable ‘signal’

* User wakes up time to time
and check if signal has come

* Otherwise go to sleep again

\2ZZ

. cond_wait()
—
4

cond_signal()

|
LOCK

|
LOCK
!

__9

saehansy@uci.edu 34

Per-thread Variables

* Local variables will be on stack..
* its address points to somewhere in the thread’s stack

