
CS143A
Principles on Operating Systems

Discussion 09:
Instructor: Prof. Anton Burtsev

TA: Saehanseul Yi (Hans)
Dec 6, 2019 1pm



Agenda

• Implementing new system calls
• Threads

1saehansy@uci.edu



Files to modify for new system calls

• syscall.h – SYS_wrprotect
• syscall.c – sys_wrprotect
• user.h – wrprotect
• usys.S – SYSCALL(wrprotect)

saehansy@uci.edu 2

label
similar to ‘goto’ syntax

<user.h>

<usys.S>

<trap.c>



Threads

• Lightweight Process (LWP)
• They share address space
• We don’t create new pages—faster creation

• Inter-process communication is costly:
• Through file
• Shared memory (much complicated than thread’s)
• pipe
• socket
• …

• Faster context-switching

saehansy@uci.edu 3



Creating threads

saehansy@uci.edu 4

create process



Creating threads

saehansy@uci.edu 5

create process

allocate user virtual memory & copy pages
(we don’t need this)



Creating threads

saehansy@uci.edu 6

create process

allocate user virtual memory & copy pages
(we don’t need this)



Creating threads

saehansy@uci.edu 7

return value.. where does eip point to now?



Creating threads

saehansy@uci.edu 8

return value.. where does eip point to now?

copy file descriptors



Creating threads

saehansy@uci.edu 9

return value.. where does eip point to now?

copy file descriptors

schedule the thread



Creating threads

saehansy@uci.edu 10

return value.. where does eip point to now?

copy file descriptors

schedule the thread

kind of a spinlock



Creating threads

saehansy@uci.edu 11

return value.. where does eip point to now?

copy file descriptors

schedule the thread

kind of a spinlock

1. set eip
2. set esp (stack top)
3. push arguments and return address
to stack



Amdahl’s Law

saehansy@uci.edu 12https://en.wikichip.org/wiki/amdahl%27s_law

• A program consists of two parts: 
parallelizable vs. non-parallelizable(serial)

• If parallelizable takes 60% of execution time,
even if we use infinite number of threads to parallelize it,
the program’s execution time is reduced by 60%

• maximum speedup 1/0.4 = 2.5x

Parallel and High Performance Computing(Maning)



Race condition (Data race)

saehansy@uci.edu 13

Thread 1 Thread 2 Memory Value

read 0

increment 0

write 1

read 1

increment 1

write 2

Thread #1
b=a++;

Thread #2
b=a++;

Parent
a=0;

Thread#1’s b: 1
Thread#2’s b: 2



Race condition (Data race)

saehansy@uci.edu 14

Thread 1 Thread 2 Memory Value

read 0

increment 0

write 1

read 1

increment 1

write 2

Thread #1
b=a++;

Thread #2
b=a++;

Parent
a=0;

Thread 1 Thread 2 Memory Value

read 0

read 0

increment 0

write 1

increment 1

write 1

Thread#1’s b: 1
Thread#2’s b: 2



Race condition (Data race)

saehansy@uci.edu 15

Thread 1 Thread 2 Memory Value

read 0

increment 0

write 1

read 1

increment 1

write 2

Thread #1
b=a++;

Thread #2
b=a++;

Parent
a=0;

Thread 1 Thread 2 Memory Value

read 0

read 0

increment 0

write 1

increment 1

write 1

Thread#1’s b: 1
Thread#2’s b: 2

Thread#1’s b: 1
Thread#2’s b: 1



Race condition: Atomic operations

saehansy@uci.edu 16

Process 1 Process 2 Memory Value

atomic_inc 1

atomic_inc 2

Thread #1
b=a++;

Thread #2
b=a++;

Thread#1’s b:1
Thread#2’s b: 2

atomic_inc = read + inc + write

Parent
a=0;



Race condition: Atomic operations

saehansy@uci.edu 17

Process 1 Process 2 Memory Value

atomic_inc 1

atomic_inc 2

Thread #1
b=a++;

Thread #2
b=a++;

Thread#1’s b: 1
Thread#2’s b: 2

atomic_inc = read + inc + write

• Special instructions
• e.g. xchg

temp = a;
a = b;
b = temp;

temp = a;
a = b;
b = temp;

Parent
a=0;



Race condition: Atomic operations

saehansy@uci.edu 18

Process 1 Process 2 Memory Value

atomic_inc 1

atomic_inc 2

Thread #1
b=a++;

Thread #2
b=a++;

Thread#1’s b: 1
Thread#2’s b: 2

atomic_inc = read + inc + write

• Special instructions
• e.g. xchg

temp = a;
a = b;
b = temp;

temp = a;
a = b;
b = temp;

Lock()
… (Critical section)
Unlock()

void Lock()
{

while (lock ==1);
lock = 1;

}

void Unlock()
{

lock = 0;
}

Parent
a=0;



Race condition: Atomic operations

saehansy@uci.edu 19

Thread 1 Thread 2 Memory Value

atomic_inc 1

atomic_inc 2

Thread #1
b=a++;

Thread #2
b=a++;

Thread#1’s b: 1
Thread#2’s b: 2

atomic_inc = read + inc + write

• Special instructions
• e.g. xchg

temp = a;
a = b;
b = temp;

temp = a;
a = b;
b = temp;

Lock()
… (Critical section)
Unlock()

void Lock()
{

while (lock ==1);
lock = 1;

}

void Unlock()
{

lock = 0;
}

Spinning!

Parent
a=0;



Race condition: Atomic operations

• Spinlock uses CPU continuously
• It will take portion of CPU utilization
• Degrades performance of other threads/process

saehansy@uci.edu 20

void Lock()
{

while (lock ==1);
lock = 1;

}

void Unlock()
{

lock = 0;
}

Spinning!



Race condition: Atomic operations

• Spinlock uses CPU continuously
• It will take portion of CPU utilization
• Degrades performance of other threads/process
• Why don’t we make it sleep while waiting?

saehansy@uci.edu 21

void Lock()
{

while (lock ==1);
lock = 1;

}

void Unlock()
{

lock = 0;
}

Spinning!



Race condition: Atomic operations

• Spinlock uses CPU continuously
• It will take portion of CPU utilization
• Degrades performance of other threads/process
• Why don’t we make it sleep while waiting?

saehansy@uci.edu 22

void Lock()
{

while (lock ==1);
lock = 1;

}

void Unlock()
{

lock = 0;
}

Spinning!



Race condition: Atomic operations

• Spinlock uses CPU continuously
• It will take portion of CPU utilization
• Degrades performance of other threads/process
• Why don’t we make it sleep while waiting?
à Mutex (mutually exclusive)

saehansy@uci.edu 23

void Lock()
{

while (lock ==1)
yield();

lock = 1;
}

void Unlock()
{

lock = 0;
}



Race condition: Atomic operations

• Spinlock uses CPU continuously
• It will take portion of CPU utilization
• Degrades performance of other threads/process
• Why don’t we make it sleep while waiting?
à Mutex (mutually exclusive)
• xv6 doesn’t have yield() so we use 

sleep() to mimic the behavior

saehansy@uci.edu 24

void Lock()
{

while (lock ==1)
sleep(1);

lock = 1;
}

void Unlock()
{

lock = 0;
}



Semaphore: Producer--Consumer

saehansy@uci.edu 25



Semaphore: Producer--Consumer

saehansy@uci.edu 26

LOCK
acquire



Semaphore: Producer--Consumer

saehansy@uci.edu 27

LOCK

LOCK



Semaphore: Producer--Consumer

saehansy@uci.edu 28

LOCK

LOCK
waiting



Semaphore: Producer--Consumer

saehansy@uci.edu 29

LOCK

LOCK



Semaphore: Producer--Consumer

saehansy@uci.edu 30

LOCK

LOCK

sem_init: initialize counter
(~ # of books)

sem_wait: if counter > 0, 
decrease by 1
if counter == 0, wait until it is 
greater than 0

sem_post: increase counter 
by 1

HINT: counter should be in 
critical section.
You can also use cond var



Conditional Variable: Producer--Consumer

saehansy@uci.edu 31

LOCK

LOCK



Conditional Variable: Producer--Consumer

saehansy@uci.edu 32

LOCK

LOCK

zZZ



Conditional Variable: Producer--Consumer

saehansy@uci.edu 33

LOCK

LOCK

signaling à
zZZ



Conditional Variable: Producer--Consumer

saehansy@uci.edu 34

LOCK

LOCK

signaling à

• Create another variable ‘signal’
• User wakes up time to time 

and check if signal has come
• Otherwise go to sleep again

zZZ
cond_wait()

cond_signal()



Per-thread Variables

• Local variables will be on stack..
• its address points to somewhere in the thread’s stack

saehansy@uci.edu 35


