
CS 143A Name (Print):

Fall 2019 Seat: SEAT

Midterm Left person:

11/13/2019 Right person:

Time Limit: 11:00pm - 11:50pm

• Don’t forget to write your name on this exam.

• This is an open book, open notes exam. But no online or in-class chatting.

• Ask us if something is confusing in the questions.

• Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

• Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-
tially correct explanations might still receive partial credit.

• If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem Points Score

1 15

2 10

3 10

4 10

Total: 45

CS 143A Midterm - Page 2 of 9

1. Calling conventions

(a) (5 points) Below is the source code and a disassembly of a simple C pogram:

int foo(int a) { 1. 00000000 <foo>:

a++; 2. 0: push ebp

return a; 3. 1: mov ebp,esp

} 4. 3: add DWORD PTR [ebp+0x8],0x1

5. 7: mov eax,DWORD PTR [ebp+0x8]

int main(int ac, char **av) 7. a: pop ebp

{ 8. b: ret

return foo(1); 9.

} 10. 0000000c <main>:

11. ...

12. f: push 0x1 <---- eip

13. 11: call foo

14. 16: ...

The CPU is about to execute the push instruction at line 12 (address 0xf) of the disas-
sembly. Draw the stack and how it changes with every instruction of this program until
foo() returns, i.e., lines 12, 13, 1-8, and 14 (i.e., figures for the stack in 9 different states).

CS 143A Midterm - Page 3 of 9

(b) (10 points) Imagine your CPU is identical to x86 but does not have call and ret instruc-
tions. How will you implement the assembly code above (i.e., your code should support
recursive invocation of functions)?

CS 143A Midterm - Page 4 of 9

2. Basic page tables.

(a) (5 points) Which physical address is accessed by the following mov instruction?

mov eax, DWORD PTR [ebx+0x8]

Here the ebx register contains 0x1000, and the data segment is configured to have the base
of 0x1000.

Page Directory Page:

PDE 0: PPN=0x1, PTE_P, PTE_U, PTE_W

PDE 1: PPN=0x2, PTE_P, PTE_U, PTE_W

PDE 2: PPN=0x3, PTE_P, PTE_U, PTE_W

... all other PDEs are zero

The Page Table Page at the physical address 0x1000:

PTE 0: PPN=0x0, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x1, PTE_P, PTE_U, PTE_W

PTE 2: PPN=0x2, PTE_P, PTE_U, PTE_W

The Page Table Page at the physical address 0x2000:

PTE 0: PPN=0x4, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x5, PTE_P, PTE_U, PTE_W

PTE 2: PPN=0x6, PTE_P, PTE_U, PTE_W

The Page Table Page at the physical address 0x3000:

PTE 0: PPN=0x7, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x8, PTE_P, PTE_U, PTE_W

PTE 2: PPN=0x9, PTE_P, PTE_U, PTE_W

CS 143A Midterm - Page 5 of 9

(b) (5 points) Draw a page table (you can use the format similar to the previous question)
that maps virtual (or if you want to be more specific, linear) addresses 2GB (0x8000000)
to 2GB + 16KB (0x8004000) to physical addresses 0 to 16KB (0x4000).

CS 143A Midterm - Page 6 of 9

3. Xv6 boot

(a) (10 points) When xv6 boots, the boot loader loads the xv6 kernel at the physical address
0x10000 (1MB). The boot loader jumps to the entry point of the kernel ELF file which is
linked to be at 0x10000c. The first thing the xv6 kernel does is it sets up the boot-time
page table that maps two regions of vistual memory (0-4MB and 2GB-(2GB+4MB)) to
the physical range 0 to 4MB, and then jumps to the C main() function that runs in the
2GB-(2GB+4MB) range. This seems counter-intuitive: the kernel seems to be able to run
at two virtual address ranges: 0-4MB and 2GB-(2GB+4MB)—this seems to be against
the rules of linking and loading (i.e., the object file is linked to run at a specific address,
either 0x10000 or 0x80100000, but the kernel manages to run at these two location).

Can you explain how this works, i.e., what was done to allow the kernel to run in two
different address ranges?

CS 143A Midterm - Page 7 of 9

4. Relocation

Alice compiles the following C file.

#include<stdio.h>

int add (int a, int b) {

printf("Numbers are added together\n");

return a+b;

}

int main() {

int a,b;

a = 3;

b = 4;

int ret = add(a,b);

printf("Result: %u\n", ret);

return 0;

}

(a) (5 points) Which symbols are undefined and need to be resolved (explain your answer)?

CS 143A Midterm - Page 8 of 9

(b) (5 points) Which symbols need to be relocated? Note, that C treats string constants as
globals allocated in the read-only data section. Explain your answer.

CS 143A Midterm - Page 9 of 9

