
CS 143a
Discussion 3

Harishankar Vishwanathan

1

Overview
● Executable-and-linkable format (ELF) files
● Statically linked programs on linux
● Understand program entry point

2

Statically linked programs
- Program doesn’t require any shared objects to run (not even libc)

- In reality, this isn’t true, programs almost always will require shared objects

3

Program execution
- Always begins in the kernel
- A process will call exec, which ends up issuing sys_execve system call
- The kernel supports different binary formats for an executable

- It will try every format one-by-one until it succeeds.

- We will focus on ELF
- xv6/exec.c

 int
 exec(char *path, char **argv)
 {
...
 // Check ELF header
 if(readi(ip, (char*)&elf, 0, sizeof(elf)) != sizeof(elf))
 goto bad;
 if(elf.magic != ELF_MAGIC)

 goto bad;
...

4

ELF format
- Used by:

- Linker: combines multiple ELF files into an executable or
library

- Loader: loads the executable in the memory of the
process

- Both linker and loader need two views of the
same elf file:

- Linker (detailed view): needs to know DATA, TEXT, BSS
sections to merge them from with other sections from
other objects

- Loader (simpler view): needs to know only which parts of
the ELF are executable, writable, read-only.

5

ELF format
- The ELF binary is composed of:

- ELF header
- Program Header Table
- Section Header Table

- ELF is mainly composed of segments and
sections

- Segments:
- Portions of the binary that are actually loaded into

memory at runtime (composed of one or more sections)

- Sections:
- Actual program code and data that is available in memory

when a program runs
- Metadata about other sections used only in the linking

process

-

6

ELF format

7

Reading ELF
- Kernel reads ELF

- Maps programs segments into memory
according to the PHT.

- Passes execution
- Directly modifying EIP register, to the entry

address read from ELF header of the program
- Arguments are passed to the program on the

stack

8

Program entry point
- Several object files are linked into an executable ELF binary by using the

linker ld
- The linker looks for a special symbol called _start in one of the object

files
- Sets the entry point to the address of that symbol.This is where the program

starts execution.
- main is really not the entry point of the program!

9

Demo : Program entry point in .asm
; file: nasm_rc.asm
section .text
 ; The _start symbol must be declared for the linker (ld)
 global _start

_start:
 ; Execute sys_exit call. Argument: status -> ebx
 mov eax, 1 ; system call 1: sys_exit
 mov ebx, 42 ; pass arguments to sys_exit
 int 0x80 ; call into kernel

- This simple program simply returns 42.
10

Demo : Program entry point in .asm
- Compile with

nasm -f elf32 nasm_rc.asm -o nasm_rc.o
- Link with

ld -m elf_i386 -o nasm_rc nasm_rc.o
- Read the elf header, what entry point do you see?

readelf -h nasm_rc
- Is it the same as the address of _start?

objdump -M intel -d nasm_rc
- Run the program and check its exit code:

$./c_rc
$ echo $? # return code of a program
42

11

Demo : Program entry point in .c
/* file c_rc.c */

int main() {
 return 42;
}

12

Demo : Program entry point in .c
- Use the -c flag in gcc to compile but not link.

gcc -c -m32 -fno-pic c_rc.c
- When we ask gcc to just compile (but not link), the generated object file object

file is minimal:
- objdump -M intel -d c_rc.o
- Does it have an _start symbol?

- Now, link with
ld -m elf_i386 -o c_rc c_rc.o

- Does the linker give you a warning?
- What happens if you try to execute c_rc?
- How is c_rc different from c_rc.o?

- objdump -M intel -d c_rc.o 13

Demo : Program entry point in .c
- Since we just compiled (did not link) our minimal C file, the linker cannot

find the entry point (it tries to guess).
- The linker clearly needs some additional object files, where it will find the

entry point i.e. the _start symbol.

- We can specify the additional object files to the linker, but since we don’t
know what those files exactly are, we will use gcc’s help.

- Gcc when invoked without the -c flag, will invoke the linker with the required
object files

14

Demo : Program entry point in .c
- Since this talk is about how statically linked programs work, we will specify

the -static flag to gcc (the flag is passed on to the linker internally, since
we are invoking gcc and the linker together).
gcc -o c_rc -m32 -static c_rc.o

- Run the program and check its exit code:
$./c_rc
$ $?

15

Demo : Program entry point in .c
- How does gcc manage to do the linking correctly?

- To see a list of all the libraries the gcc passed on to the linker:
gcc -Wl,-verbose -m32 -o c_rc -static c_rc.o

- We see that there are some additional object files needed (the whole static
libc, libc.a).

16

Demo : Program entry point in .c
- C code does not live in a vacuum!
- It has several dependant objects, most notably libc.

17

Exercise
- Our code was clearly linked correctly and it worked: it should have the _start

symbol.
- Check out if it does in objdump -d c_rc | less, (search for _start) and if

the address matches the entry point in readelf -h c_rc
- The code at the symbol _start should call a libc related function:

__libc_start_main.

- What are the arguments to __libc_start_main?
- One of them should be the address of our main function!

18

__libc_start_main
int __libc_start_main(
 /* Pointer to the program's main function */
 (int (*main) (int, char**, char**),
 /* argc and argv */
 int argc, char **argv,
 /* Pointers to initialization and finalization functions */
 __typeof (main) init, void (*fini) (void),
 /* Finalization function for the dynamic linker */
 void (*rtld_fini) (void),
 /* End of stack */
 void* stack_end)

19

__libc_start_main
- What does it do?

- Figure out where the environment variables are on the stack
- Initialize libc
- Call the program initialization function through the passed pointer (init)
- Register the program finalization function (fini) for execution on exit
- Call main(argc, argv, envp)
- Call exit with the result of main as the exit code

20

Conclusion
- How statically linked programs work
- Linux kernel, compiler, linker, the C library co-operate in the program

execution process

21

HW3: Reading elf
- readelf is your friend

- Use it to figure out what exactly the binary of an executable contains, and at offset
locations in that binary

- You have to, finally, load the ELF binary called elf into memory and run it.
- Two structs are provided to you, read into these structs and fill them up.

- elfhdr

- Proghdr

- lseek, open, read, mmap are the syscall wrappers you would need to
work with.

22

References
https://eli.thegreenplace.net/2012/08/13/how-statically-linked-programs-run-on-linux

23

https://eli.thegreenplace.net/2012/08/13/how-statically-linked-programs-run-on-linux

