
CS 143A: Operating
Systems

Discussion 5: Examples of segmentation and paging

Agenda

• Memory access quick recap
• Example of segmentation
• Example of paging
• Address translation overview

“All problems in
computer science
can be
solved by another
level of indirection”

David Wheeler

Q1. How many
address bits does a
system have ?

Depends on the CPU
architecture

Examples

• X86 architecture – 32 bit
• Page based 32-bit virtual memory system
• 4GB (232 = 4GB) of virtual memory.

• X86-64 architecture
• Page based 64-bit virtual memory system

• Actual available physical memory might be quite less (e.g., 1GB RAM).

High level code -> Compiled code

High level code -> Compiled code

Latency examples

https://www.prowesscorp.com/computer-
latency-at-a-human-scale/

https://www.prowesscorp.com/computer-latency-at-a-human-scale/

Segmentation example
• A mechanism for dividing the processor’s

addressable memory space (called the linear
address space) into smaller protected address
spaces called segments.

Linear address space

Segmentation example
• A mechanism for dividing the processor’s

addressable memory space (called the linear
address space) into smaller protected address
spaces called segments.

• Code, Data, and Stack for a program or
System data structures

Linear address space

Code

Data

Stack

Global Descriptor
Table (GDT)

Segmentation example
• A mechanism for dividing the processor’s

addressable memory space (called the linear
address space) into smaller protected address
spaces called segments.

• Code, Data, and Stack for a program or
System data structures

Linear address space

Code

Data

Stack

Global Descriptor
Table (GDT)

Segmentation example
• A mechanism for dividing the processor’s

addressable memory space (called the linear
address space) into smaller protected address
spaces called segments.

• Code, Data, and Stack for a program or
System data structures

• Different models of segmentation

Linear address space

Code

Data

Stack

Global Descriptor
Table (GDT)

Segmentation example
• A mechanism for dividing the processor’s

addressable memory space (called the linear
address space) into smaller protected address
spaces called segments.

• Code, Data, and Stack for a program or
System data structures

• Different models of segmentation

Linear address space

Code

Data

Stack

Global Descriptor
Table (GDT)

Segmentation example
• A mechanism for dividing the processor’s

addressable memory space (called the linear
address space) into smaller protected address
spaces called segments.

• Code, Data, and Stack for a program or
System data structures

• Different models of segmentation

Linear address space

Code

Data

Stack

Segmentation example

• Illustrate the memory organization of the x86 logical address translation through a simple example.

Assume that the hardware translates the logical address ‘0xb00002005’.

The GDT register value is ‘0x7095’ and base address of the segment involved in the translation of this
logical address is 0xc00000.

Draw a diagram representing the state of the GDT in physical memory and the process of translation.

• Assume: Padding left : 0 whenever applicable

Logical address (0xb00002005)

Logical address (0xb00002005)

0 0 0 0 2 0 0 5

0000 0000 0000 0000 0010 0000 0000 0101

0 0 0 b

0000 0000 0000 1011

Segment Selector Offset

GDT lookup

0 0 0 b

0000 0000 0000 1 0 11

Segment Selector

GDT lookup

0 0 0 b

0000 0000 0000 1 0 11

Segment Selector

GDTR -> 0x7095

.

.

.

NULL segment 0
1
2

8191

GDT lookup

0 0 0 b

0000 0000 0000 1 0 11

Segment Selector

.

.

.

NULL segment 0
1
2

8191

Segment Descriptor

Base Limit Access Control
GDTR -> 0x7095

GDT lookup

0 0 0 b

0000 0000 0000 1 0 11

Segment Selector

.

.

.

NULL segment 0
1
2

8191

Segment Descriptor

Base Limit Access Control

0x00c00000

(Recall: base address of the
segment involved in the
translation of this logical address is
0xc00000.)

GDTR -> 0x7095

Linear address generation ?

0 0 0 b

0000 0000 0000 1 0 11

Segment Selector

.

.

.

NULL segment 0
1
2

8191

Segment Descriptor

Base Limit Access Control

0x00c00000

0 0 0 0 2 0 0 5

0000 0000 0000 0000 0010 0000 0000 0101

Offset

Linear address
= 0x00c00000 (Base)+ 0x00002005 (Offset)

= 0x00c02005

GDTR -> 0x7095

Linear address translation

0x000b 0x00002005

Offset: 1

GDTR: 0x7095

0x00c00000

0x00c02005

Q: Where is the GDT ?

Q: Where is the GDT ?

Q: Main memory access is slow. Can we do
anything to make access faster ?

In Main Memory

Q: Where is the GDT ?

Q: Main memory access is slow. Can we do
anything to make access faster ?

In Main Memory

Yes, with registers to store 6 most recent translations
using Segment Registers

Question

• Illustrate the memory organization of the x86, 4K, 32bit page table through a simple example.

Assume that the hardware translates the virtual address '0xc02005' into the physical address
'0x4005'. The physical addresses of the page table directory and the page table (Level 2) involved in
the translation of this virtual address are respectively 0x1000 and 0x0. Draw a diagram representing
the state of the page table in physical memory and the process of linear address space paging.

Virtual address : 0xc02005

c 0 2 0 0 5

0000 0000 1100 0000 0010 0000 0000 0101

Virtual address : 0xc02005

c 0 2 0 0 5

0000 0000 1100 0000 0010 0000 0000 0101

0000 0000 1100 0000 0010 0000 0000 0101
Size of a page = 4K (specified already)

Virtual address : 0xc02005

2^Number of bits in offset = Size of page

0000 0000 1100 0000 0010 0000 0000 0101

Virtual address : 0xc02005

2^Number of bits in offset = Size of page

2^Number of bits in offset = 4kB

0000 0000 1100 0000 0010 0000 0000 0101

Virtual address : 0xc02005

2^Number of bits in offset = Size of page

2^Number of bits in offset = 4kB

Number of bits in offset = 12

0000 0000 1100 0000 0010 0000 0000 0101

What do the bits represent ?

• 0000 0000 1100 0000 0010 0000 0000 0101

What do the bits represent ?

• 0000 0000 1100 0000 0010 0000 0000 0101

0000 0000 11 00 0000 0010 0000 0000 10

What do the bits represent ?

• 0000 0000 1100 0000 0010 0000 0000 0101

0000 0000 11 00 0000 0010 0000 0000 10

Offset for Page
Table Directory

(Level 1)

Offset for Page
Table

(Level 2)

Offset for a
byte/word

within a page.

PTBR -> 0x1000

Looking back : Assume that the hardware translates the virtual address '0xc02005' into the physical address
'0x4005'. The physical addresses of the page table directory and the page table (Level 2) involved in the
translation of this virtual address are respectively 0x1000 and 0x0.

PTBR -> 0x1000

Looking back : Assume that the hardware translates the virtual address '0xc02005' into the physical address
'0x4005'. The physical addresses of the page table directory and the page table (Level 2) involved in the
translation of this virtual address are respectively 0x1000 and 0x0.

Looking back : Assume that the hardware translates the virtual address '0xc02005' into the physical address
'0x4005'. The physical addresses of the page table directory and the page table (Level 2) involved in the
translation of this virtual address are respectively 0x1000 and 0x0.

Looking back : Assume that the hardware translates the virtual address '0xc02005' into the physical address
'0x4005'. The physical addresses of the page table directory and the page table (Level 2) involved in the
translation of this virtual address are respectively 0x1000 and 0x0.

Looking back : Assume that the hardware translates the virtual address '0xc02005' into the physical address
'0x4005'. The physical addresses of the page table directory and the page table (Level 2) involved in the
translation of this virtual address are respectively 0x1000 and 0x0.

Looking back : Assume that the hardware translates the virtual address '0xc02005' into the physical address
'0x4005'. The physical addresses of the page table directory and the page table (Level 2) involved in the
translation of this virtual address are respectively 0x1000 and 0x0.

Looking back : Assume that the hardware translates the virtual address '0xc02005' into the physical address
'0x4005'. The physical addresses of the page table directory and the page table (Level 2) involved in the
translation of this virtual address are respectively 0x1000 and 0x0.

Q: Where are the Page Tables ?

Q: Where are the Page Tables ?

Q: Main memory access is slow. Can we do
anything to make access faster ?

In Main Memory

Q: Where are the Page Tables ?

Q: Main memory access is slow. Can we do
anything to make access faster ?

In Main Memory

Yes, with Translation Lookaside Buffers

Address
translation
overview:
Putting everything together

“All problems in
computer science
can be
solved by another
level of indirection”

David Wheeler

“...except for the problem of too many layers of indirection.”

Questions

