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Recap: role of the operating system

● Share hardware across multiple processes
● Illusion of private CPU, private memory

● Abstract hardware
● Hide details of specific hardware devices

● Provide services
● Serve as a library for applications

● Security
● Isolation of processes
● Controlled ways to communicate (in a secure manner)



  

Typical UNIX OS



  

System calls
● Provide user to kernel communication

● Effectively an invocation of a kernel function

● System calls are the interface of the OS



  

System call



  

System calls, interface for...

● Processes
● Creating, exiting, waiting, terminating

● Memory
● Allocation, deallocation

● Files and folders
● Opening, reading, writing, closing

● Inter-process communication
● Pipes



  

UNIX (xv6) system calls are designed 
around the shell



  

Why shell?



  Ken Thompson (sitting) and Dennis Ritchie (standing) are working together 
on a PDP-11 (around 1970). They are using Teletype Model 33 terminals.

https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/PDP-11


  DEC LA36 DECwriter II Terminal



  DEC VT100 terminal, 1980



  

Suddenly this makes sense

● List all files
\> ls 
total 9212
drwxrwxr-x  3 aburtsev aburtsev   12288 Oct  1 08:27 ./
drwxrwxr-x 43 aburtsev aburtsev    4096 Oct  1 08:25 ../
-rw-rw-r--  1 aburtsev aburtsev     936 Oct  1 08:26 asm.h
-rw-rw-r--  1 aburtsev aburtsev    3397 Oct  1 08:26 bio.c
-rw-rw-r--  1 aburtsev aburtsev     100 Oct  1 08:26 bio.d
-rw-rw-r--  1 aburtsev aburtsev    6416 Oct  1 08:26 bio.o
…

● Count number of lines in a file (ls.c imlements ls)

\> wc -l ls.c
85 ls.c



  

But what is shell?



  

But what is shell?
● Normal process

● Kernel starts it for each user that logs in into the 
system

● In xv6 shell is created after the kernel boots
● Shell interacts with the kernel through system 

calls
● E.g., starts other processes



  

What happens underneath?
\> wc -l ls.c
85 ls.c
\>

● Shell invokes wc
● Creates a new process to run wc
● Passes the arguments (-l and ls.c)  

● wc sends its output to the terminal (console)

● Exits when done with exit()
● Shell detects that wc is done (wait())

● Prints (to the same terminal) its command prompt
● Ready to execute the next command



  

Console and file I/O



  

File open
● fd = open(“ls.c”, O_READONLY) – open a file

● Operating system returns a file descriptor



  

File descriptors



  

File descriptors
● An index into a table, i.e., just an integer
● The table maintains pointers to “file” objects

● Abstracts files, devices, pipes
● In UNIX everything is a file – all objects provide file 

interface
● Process may obtain file descriptors through

● Opening a file, directory, device
● By creating a pipe
● Duplicating an existing descriptor



  

File I/O
● fd = open(“foobar.txt”, O_READONLY) – 

open a file
● Operating system returns a file desciptor

● read(fd, buf, n) – read n bytes from fd into 
buf 

● write(fd, buf, n) – write n bytes from buf 
into fd



  

File descriptors: two processes



  

Console I/O



  

Each process has standard file 
descriptors

● Numbers are just a convention
● 0 – standard input
● 1 – standard output
● 2 – standard error

● This convention is used by the shell to 
implement I/O redirection and pipes



  

Console read (read of standard intput)



  

Console write (write of standard output)



  

Example: cat

1.    char buf[512]; int n;
2.    for(;;) {
3.        n = read(0, buf, sizeof buf);
4.        if(n == 0)
5.            break;
6.        if(n < 0) {
7.            fprintf(2, "read error\n");
8.            exit(); }
9.        if(write(1, buf, n) != n) { 
10.            fprintf(2, "write error\n");
11.            exit(); 
12.        } 
13.    }



  

Creating processes



  

fork()



  

fork()



  

fork() -- create new process 
1.  int pid;

2.  pid = fork();
3.  if(pid > 0){
4.     printf("parent: child=%d\n", pid);
5.     pid = wait();
6.     printf("child %d is done\n", pid);
7.  } else if(pid == 0){
8.     printf("child: exiting\n");
9.     exit();
10. } else {
11.     printf("fork error\n");
12. }



  

This is weird... fork() creates 
copies of the same process, why?



  

fork() is used together with exec()
● exec() -- replaces memory of a current process 

with a memory image (of a program) loaded 
from a file

    char *argv[3];
    argv[0] = "echo";
    argv[1] = "hello";
    argv[2] = 0;
    exec("/bin/echo", argv);
    printf("exec error\n");



  

fork() and exec()



  

fork() and exec()



  

● Still weird... why first fork() and then exec()?

● Why not exec() directly?



  

I/O Redirection



  

Motivating example #1

● Normally wc sends its output to the console (screen)

● Count the number of lines in ls.c
\> wc -l ls.c
85 ls.c

● What if we want to save the number of lines  into a 
file? 



  

Motivating example #1

● Normally wc sends its output to the console (screen)

● Count the number of lines in ls.c
\> wc -l ls.c
85 ls.c

● What if we want to save the number of lines into a 
file? 
● We can add an argument

\> wc -l ls.c -o foobar.txt



  

Motivating example #1

\> wc -l ls.c -o foobar.txt
● But there is a better way

\> wc -l ls.c > foobar.txt



  

I/O redirection

● > redirect output
● Redirect output of a command into a file

\> wc -l ls.c > foobar.txt

\> cat ls.c > ls-new.c
● < redirect input

● Redirect input to read from a file

\> wc -l < ls.c

\> cat < ls.c
● Redirect both

\> wc -l < ls.c > foobar.txt



  

Standard output is now a file



  

Powerful design choice

● File descriptors don't have to point to files only
● Any object with the same read/write interface is ok
● Files
● Devices

– Console
● Pipes



  

Example: cat

1.    char buf[512]; int n;
2.    for(;;) {
3.        n = read(0, buf, sizeof buf);
4.        if(n == 0)
5.            break;
6.        if(n < 0) {
7.            fprintf(2, "read error\n");
8.            exit(); }
9.        if(write(1, buf, n) != n) { 
10.            fprintf(2, "write error\n");
11.            exit(); 
12.        } 
13.    }



  

Why do we need I/O redirection?



  

●  We want to see how many strings in ls.c 
contain “main”

Motivating example #2



  

●  We want to see how many strings in ls.c contain “main”

● Imagine we have grep
– grep filters strings matching a pattern

\>grep "main" ls.c

main(int argc, char *argv[])
● Or the same written differently

\>grep "main" < ls.c

main(int argc, char *argv[])

Motivating example #2



  

●  Now we have 

● grep
– Filters strings matching a pattern

● wc -l
– Counts lines

● Can we combine them? 

Motivating example #2



  

Pipes

● Imagine we have a way to redirect output 
of one process into input of another  

  \> cat ls.c | grep main 
● |(a “pipe”) does redirection 

  



  

Pipes

● In our example:

  \> cat ls.c | grep main 
● cat outputs ls.c to its output

● cat's output is connected to grep's input with 
the pipe

● grep filters lines that match a specific criteria, 
i.e., once that have “main”



  

pipe - interprocess communication
● Pipe is a kernel buffer exposed as a pair of file 

descriptors
● One for reading, one for writing

● Pipes allow processes to communicate
● Send messages to each other



  

Two file descriptors pointing to a pipe



  

Pipes allow us to connect programs, 
i.e., the output of one program to the input of 

another



  

Composability

●  Now if we want to see how many strings in ls.c 
contain “main”  we do:

\> cat ls.c | grep main | wc -l
1
● .. but if we want to count the once that contain “a”:

cat ls.c | grep a | wc -l
33
● We change only input to grep! 

● Small set of tools (ls, grep, wc) compose into 
complex workflows



  

Better than this...



  

Building I/O redirection



  

How can we build this?

\> cat ls.c | grep main | wc -l

1
● wc has to operate on the output of grep
● grep operates on the output of cat



  

Back to fork()



  

fork()



  

File descriptors after fork()



  

Two system calls for I/O redirection
● close(fd) – closes file descriptor

● The next opened file descriptor will have the 
lowest number 



  

File descriptors after close()/open()
Example: \> cat < ls.c



  

Two system calls for I/O redirection
● close(fd) – closes file descriptor

● The next opened file descriptor will have the 
lowest number 

● exec() replaces process memory, but 
● leaves its file table (table of the file descriptors 

untouched)
● A process can create a copy of itself with fork()
● Change the file descriptors for the next program it is 

about to run
● And then execute the program with exec()



  

File descriptors after exec()
Example: \> cat < ls.c



  

Example: \> cat < ls.c

1.    char *argv[2];
2.    argv[0] = "cat";
3.    argv[1] = 0;
4.    if(fork() == 0) {
5.        close(0);
6.        open("ls.c", O_RDONLY);
7.        exec("cat", argv);
8.    }



  

Why fork() not just exec()

● The reason for the pair of fork()/exec()
● Shell can manipulate the new process (the copy 

created by fork())

● Before running it with exec()



  

Back to Motivating example #2 
(\> cat ls.c | grep main | wc -l)



  

Pipes

● We now understand how to use a pipe to 
connect two programs
● Create a pipe
● Fork
● Attach one end to standard output 

– of the left side of “|”
● Another to the standard input 

– of the right side of “|”



  

wc on the 
read end of 
the pipe

1. int p[2]; 
2. char *argv[2]; argv[0] = "wc"; argv[1] = 0;
3. pipe(p);
4. if(fork() == 0) {
5.    close(0);
6.    dup(p[0]);
7.    close(p[0]);
8.    close(p[1]);
9.    exec("/bin/wc", argv);
10. } else {
11.    write(p[1], "hello world\n", 12);
12.    close(p[0]);
13.    close(p[1]);
14. }



  



  

cat ls.c | grep main | wc -l



  

Powerful conclusion

● fork(), standard file descriptors, pipes and 
exec() allow complex programs out of simple 
tools

● They form the core of the UNIX interface



  

More system calls



  

Process management
● exit() -- terminate current process

● wait() -- wait for the child to exit



  

Creating files
● mkdir() – creates a directory

● open(O_CREATE) – creates a file

● mknod() – creates an empty file marked as 
device
● Major and minor numbers uniquely identify the 

device in the kernel

● fstat() – retrieve information about a file



  

Links, inodes
● Same file can have multiple names – links

● But unique inode number

● link() – create a link 

● unlink() – delete file

● Example, create a temporary file

  fd = open("/tmp/xyz", O_CREATE|O_RDWR);
  unlink("/tmp/xyz");



  

Xv6 system 
calls

fork() Create a process
exit() Terminate the current process
wait() Wait for a child process to exit
kill(pid) Terminate process pid
getpid() Return the current process’s pid
sleep(n) Sleep for n clock ticks
exec(filename, *argv) Load a file and execute it
sbrk(n) Grow process’s memory by n bytes
open(filename, flags) Open a file; the flags indicate read/write
read(fd, buf, n) Read n bytes from an open file into buf
write(fd, buf, n) Write n bytes to an open file
close(fd) Release open file fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
chdir(dirname) Change the current directory
mkdir(dirname) Create a new directory
mknod(name, major, minor) Create a device file
fstat(fd) Return info about an open file
link(f1, f2) Create another name (f2) for the file f1
unlink(filename) Remove a file



  

In many ways xv6 is an OS 
you run today



  Evolution of Unix and Unix-like systems



  

Backup slides



  Speakers from the 1984 Summer Usenix Conference (Salt Lake City, UT)



  

Pipes
● Shell composes simple utilities into more 

complex actions with pipes, e.g.

    grep FORK sh.c | wc -l
● Create a pipe and connect ends



  

System call



  

User address space



  

Kernel address space



  

Kernel and user address spaces
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