

OS Interface

Anton Burtsev

Recap: role of the operating system

● Share hardware across multiple processes
● Illusion of private CPU, private memory

● Abstract hardware
● Hide details of specific hardware devices

● Provide services
● Serve as a library for applications

● Security
● Isolation of processes
● Controlled ways to communicate (in a secure manner)

Typical UNIX OS

System calls
● Provide user to kernel communication

● Effectively an invocation of a kernel function

● System calls are the interface of the OS

System call

System calls, interface for...

● Processes
● Creating, exiting, waiting, terminating

● Memory
● Allocation, deallocation

● Files and folders
● Opening, reading, writing, closing

● Inter-process communication
● Pipes

UNIX (xv6) system calls are designed
around the shell

Why shell?

 Ken Thompson (sitting) and Dennis Ritchie (standing) are working together
on a PDP-11 (around 1970). They are using Teletype Model 33 terminals.

https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/PDP-11

 DEC LA36 DECwriter II Terminal

 DEC VT100 terminal, 1980

Suddenly this makes sense

● List all files
\> ls
total 9212
drwxrwxr-x 3 aburtsev aburtsev 12288 Oct 1 08:27 ./
drwxrwxr-x 43 aburtsev aburtsev 4096 Oct 1 08:25 ../
-rw-rw-r-- 1 aburtsev aburtsev 936 Oct 1 08:26 asm.h
-rw-rw-r-- 1 aburtsev aburtsev 3397 Oct 1 08:26 bio.c
-rw-rw-r-- 1 aburtsev aburtsev 100 Oct 1 08:26 bio.d
-rw-rw-r-- 1 aburtsev aburtsev 6416 Oct 1 08:26 bio.o
…

● Count number of lines in a file (ls.c imlements ls)

\> wc -l ls.c
85 ls.c

But what is shell?

But what is shell?
● Normal process

● Kernel starts it for each user that logs in into the
system

● In xv6 shell is created after the kernel boots
● Shell interacts with the kernel through system

calls
● E.g., starts other processes

What happens underneath?
\> wc -l ls.c
85 ls.c
\>

● Shell invokes wc
● Creates a new process to run wc
● Passes the arguments (-l and ls.c)

● wc sends its output to the terminal (console)

● Exits when done with exit()
● Shell detects that wc is done (wait())

● Prints (to the same terminal) its command prompt
● Ready to execute the next command

Console and file I/O

File open
● fd = open(“ls.c”, O_READONLY) – open a file

● Operating system returns a file descriptor

File descriptors

File descriptors
● An index into a table, i.e., just an integer
● The table maintains pointers to “file” objects

● Abstracts files, devices, pipes
● In UNIX everything is a file – all objects provide file

interface
● Process may obtain file descriptors through

● Opening a file, directory, device
● By creating a pipe
● Duplicating an existing descriptor

File I/O
● fd = open(“foobar.txt”, O_READONLY) –

open a file
● Operating system returns a file desciptor

● read(fd, buf, n) – read n bytes from fd into
buf

● write(fd, buf, n) – write n bytes from buf
into fd

File descriptors: two processes

Console I/O

Each process has standard file
descriptors

● Numbers are just a convention
● 0 – standard input
● 1 – standard output
● 2 – standard error

● This convention is used by the shell to
implement I/O redirection and pipes

Console read (read of standard intput)

Console write (write of standard output)

Example: cat

1. char buf[512]; int n;
2. for(;;) {
3. n = read(0, buf, sizeof buf);
4. if(n == 0)
5. break;
6. if(n < 0) {
7. fprintf(2, "read error\n");
8. exit(); }
9. if(write(1, buf, n) != n) {
10. fprintf(2, "write error\n");
11. exit();
12. }
13. }

Creating processes

fork()

fork()

fork() -- create new process
1. int pid;

2. pid = fork();
3. if(pid > 0){
4. printf("parent: child=%d\n", pid);
5. pid = wait();
6. printf("child %d is done\n", pid);
7. } else if(pid == 0){
8. printf("child: exiting\n");
9. exit();
10. } else {
11. printf("fork error\n");
12. }

This is weird... fork() creates
copies of the same process, why?

fork() is used together with exec()
● exec() -- replaces memory of a current process

with a memory image (of a program) loaded
from a file

 char *argv[3];
 argv[0] = "echo";
 argv[1] = "hello";
 argv[2] = 0;
 exec("/bin/echo", argv);
 printf("exec error\n");

fork() and exec()

fork() and exec()

● Still weird... why first fork() and then exec()?

● Why not exec() directly?

I/O Redirection

Motivating example #1

● Normally wc sends its output to the console (screen)

● Count the number of lines in ls.c
\> wc -l ls.c
85 ls.c

● What if we want to save the number of lines into a
file?

Motivating example #1

● Normally wc sends its output to the console (screen)

● Count the number of lines in ls.c
\> wc -l ls.c
85 ls.c

● What if we want to save the number of lines into a
file?
● We can add an argument

\> wc -l ls.c -o foobar.txt

Motivating example #1

\> wc -l ls.c -o foobar.txt
● But there is a better way

\> wc -l ls.c > foobar.txt

I/O redirection

● > redirect output
● Redirect output of a command into a file

\> wc -l ls.c > foobar.txt

\> cat ls.c > ls-new.c
● < redirect input

● Redirect input to read from a file

\> wc -l < ls.c

\> cat < ls.c
● Redirect both

\> wc -l < ls.c > foobar.txt

Standard output is now a file

Powerful design choice

● File descriptors don't have to point to files only
● Any object with the same read/write interface is ok
● Files
● Devices

– Console
● Pipes

Example: cat

1. char buf[512]; int n;
2. for(;;) {
3. n = read(0, buf, sizeof buf);
4. if(n == 0)
5. break;
6. if(n < 0) {
7. fprintf(2, "read error\n");
8. exit(); }
9. if(write(1, buf, n) != n) {
10. fprintf(2, "write error\n");
11. exit();
12. }
13. }

Why do we need I/O redirection?

● We want to see how many strings in ls.c
contain “main”

Motivating example #2

● We want to see how many strings in ls.c contain “main”

● Imagine we have grep
– grep filters strings matching a pattern

\>grep "main" ls.c

main(int argc, char *argv[])
● Or the same written differently

\>grep "main" < ls.c

main(int argc, char *argv[])

Motivating example #2

● Now we have

● grep
– Filters strings matching a pattern

● wc -l
– Counts lines

● Can we combine them?

Motivating example #2

Pipes

● Imagine we have a way to redirect output
of one process into input of another

 \> cat ls.c | grep main
● |(a “pipe”) does redirection

Pipes

● In our example:

 \> cat ls.c | grep main
● cat outputs ls.c to its output

● cat's output is connected to grep's input with
the pipe

● grep filters lines that match a specific criteria,
i.e., once that have “main”

pipe - interprocess communication
● Pipe is a kernel buffer exposed as a pair of file

descriptors
● One for reading, one for writing

● Pipes allow processes to communicate
● Send messages to each other

Two file descriptors pointing to a pipe

Pipes allow us to connect programs,
i.e., the output of one program to the input of

another

Composability

● Now if we want to see how many strings in ls.c
contain “main” we do:

\> cat ls.c | grep main | wc -l
1
● .. but if we want to count the once that contain “a”:

cat ls.c | grep a | wc -l
33
● We change only input to grep!

● Small set of tools (ls, grep, wc) compose into
complex workflows

Better than this...

Building I/O redirection

How can we build this?

\> cat ls.c | grep main | wc -l

1
● wc has to operate on the output of grep
● grep operates on the output of cat

Back to fork()

fork()

File descriptors after fork()

Two system calls for I/O redirection
● close(fd) – closes file descriptor

● The next opened file descriptor will have the
lowest number

File descriptors after close()/open()
Example: \> cat < ls.c

Two system calls for I/O redirection
● close(fd) – closes file descriptor

● The next opened file descriptor will have the
lowest number

● exec() replaces process memory, but
● leaves its file table (table of the file descriptors

untouched)
● A process can create a copy of itself with fork()
● Change the file descriptors for the next program it is

about to run
● And then execute the program with exec()

File descriptors after exec()
Example: \> cat < ls.c

Example: \> cat < ls.c

1. char *argv[2];
2. argv[0] = "cat";
3. argv[1] = 0;
4. if(fork() == 0) {
5. close(0);
6. open("ls.c", O_RDONLY);
7. exec("cat", argv);
8. }

Why fork() not just exec()

● The reason for the pair of fork()/exec()
● Shell can manipulate the new process (the copy

created by fork())

● Before running it with exec()

Back to Motivating example #2
(\> cat ls.c | grep main | wc -l)

Pipes

● We now understand how to use a pipe to
connect two programs
● Create a pipe
● Fork
● Attach one end to standard output

– of the left side of “|”
● Another to the standard input

– of the right side of “|”

wc on the
read end of
the pipe

1. int p[2];
2. char *argv[2]; argv[0] = "wc"; argv[1] = 0;
3. pipe(p);
4. if(fork() == 0) {
5. close(0);
6. dup(p[0]);
7. close(p[0]);
8. close(p[1]);
9. exec("/bin/wc", argv);
10. } else {
11. write(p[1], "hello world\n", 12);
12. close(p[0]);
13. close(p[1]);
14. }

cat ls.c | grep main | wc -l

Powerful conclusion

● fork(), standard file descriptors, pipes and
exec() allow complex programs out of simple
tools

● They form the core of the UNIX interface

More system calls

Process management
● exit() -- terminate current process

● wait() -- wait for the child to exit

Creating files
● mkdir() – creates a directory

● open(O_CREATE) – creates a file

● mknod() – creates an empty file marked as
device
● Major and minor numbers uniquely identify the

device in the kernel

● fstat() – retrieve information about a file

Links, inodes
● Same file can have multiple names – links

● But unique inode number

● link() – create a link

● unlink() – delete file

● Example, create a temporary file

 fd = open("/tmp/xyz", O_CREATE|O_RDWR);
 unlink("/tmp/xyz");

Xv6 system
calls

fork() Create a process
exit() Terminate the current process
wait() Wait for a child process to exit
kill(pid) Terminate process pid
getpid() Return the current process’s pid
sleep(n) Sleep for n clock ticks
exec(filename, *argv) Load a file and execute it
sbrk(n) Grow process’s memory by n bytes
open(filename, flags) Open a file; the flags indicate read/write
read(fd, buf, n) Read n bytes from an open file into buf
write(fd, buf, n) Write n bytes to an open file
close(fd) Release open file fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
chdir(dirname) Change the current directory
mkdir(dirname) Create a new directory
mknod(name, major, minor) Create a device file
fstat(fd) Return info about an open file
link(f1, f2) Create another name (f2) for the file f1
unlink(filename) Remove a file

In many ways xv6 is an OS
you run today

 Evolution of Unix and Unix-like systems

Backup slides

 Speakers from the 1984 Summer Usenix Conference (Salt Lake City, UT)

Pipes
● Shell composes simple utilities into more

complex actions with pipes, e.g.

 grep FORK sh.c | wc -l
● Create a pipe and connect ends

System call

User address space

Kernel address space

Kernel and user address spaces

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

