
Discussion 8
Harishankar Vishwanathan

Agenda
- Midterm review

- Questions 1 through 5

Question 1
- A program to:

- Read bytes from the standard input
- Fork
- Execute itself with the exec() system call
- Redirect all bytes it reads to its child creating an endless pipeline.

Question 1
char buf[1];
pipe(p);
read (0, buf, 1);
pid = fork();

if (pid == 0) {
close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
execv(argv[0], argv);

}

else if (pid > 0) {
close(1);
dup(p[1]);
write(p[1], buf, 1);
close(p[1]);

}

Question 2
int bar(int x, int y) {
 printf(1, "x:%d, y:%d\n", x, y);
 return x;
}

int foo(int a, int b, int c) {
 return bar(a + b, c);
}

main() {
 foo(1, 2, 3);
 exit(0);
}

Question 2
int bar(int x, int y) {
 printf(1, "x:%d, y:%d\n", x, y);
 return x;
}

int foo(int a, int b, int c) {
 return bar(a + b, c);
}

main() {
 foo(1, 2, 3);
 exit(0);
}

Fake return PC

Old EBP

3 (3rd argument to foo)

2 (2nd argument to foo)

1 (1st argument to foo)

Return address in main

Old EBP (of main)

3 (2nd argument to bar)

3 (= 1+2) (1st argument to bar)

Return address in foo

Old EBP (of foo)

3 (4th argument to printf)

3 (3rd argument to printf)

Address of "x:%d, y:%d\n" (2nd argument to printf)

1 (1st argument to printf)

Question 3
Page Directory Page (at physical address 0x1000)

PDE 0: PPN=0x2, PTE_P, PTE_U, PTE_W

... all other PDEs are zero

The Page Table Page (physical address 0x2000)

PTE 0: PPN=0x3, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x4, PTE_P, PTE_U, PTE_W

... all other PTEs are zero

Question 3

0x2 P|U|W 0x3 P|U|W

0x4 P|U|W

0x1000 0x2000

Question 3

0x2 P|U|W 0x3 P|U|W

0x4 P|U|W

0x1000 0x2000

Vir: 0x3000 to 0x3FFFPhy: 0x0 to 0xFFF

Vir: 0x4000 to 0x4FFFPhy: 0x1000 to 0x1FFF

Question 4
Construct the page table that maps the following virtual addresses

- 0 to 4MB to physical addresses 0 to 4MB
- 2GB to 2GB+4MB to physical addresses 0 to 4MB

Question 4

0x2000 P|U|W 0x0 P|U|W

0x1000 P|U|W

0x2000 P|U|W

0x3FFF P|U|W

0x1000 0x2000

- 0 to 4MB to physical addresses 0 to 4MB

1024 PTEs

0

Question 4

0x3000 P|U|W

0x0 P|U|W

0x1000 P|U|W

0x2000 P|U|W

0x3FFF P|U|W

0x1000 0x3000

- 2GB to 2GB+4MB to physical addresses 0 to 4MB

512
1024 PTEs

Question 4

0x2000 P|U|W

0x3000 P|U|W

0x0 P|U|W

0x1000 P|U|W

0x2000 P|U|W

0x3FFF P|U|W

0x1000 0x2000

- 2GB to 2GB+4MB to physical addresses 0 to 4MB

512

0 0x0 P|U|W

0x1000 P|U|W

0x2000 P|U|W

0x3FFF P|U|W

0x3000

Question 5
How many times fork() in the program
above executes successfully running on
the xv6 kernel?

NPROC is 64000

main() {
 while (1) {
 fork();
 }
}

- Asking you to estimate, trying to be
as specific as possible.

- Answer include SEVERAL details
(both implementation and
conceptual)

- Marks will be deducted based on
the main ideas missed in the
estimate.

Question 5
- Estimate available memory (or no. of pages available) before kernel

starts init and shell
- Estimate no. of pages per process, typically
- Calculate number of forks in the forkbomb

Question 5
- Estimate available memory (or no. of pages available) before kernel

starts init and shell
- Assume a kernel end virtual address
- Calculate first virtual address of first page donated to the kernel memory allocator (hw)
- Calculate the size of the kernel page tables

- It maps 4 regions (kmap), 65536 pages
- X page directories, Y page tables.

- Until now: size of kernel image + size of page tables

Question 5
- Estimate no. of pages per process, typically

- 1 page per region: text, data, (guard), stack
- 1 page directory page
- 1 page table page for mapping the different regions

- Every process maps the kernel
- Calculate the number of pages for mapping KERNBASE:KERNBASE+PHYSTOP

(to 0:PHYSTOP)
- Add page table pages and page directory entries if needed

- 1 page for the kernel stack

Question 5
- Calculate number of forks in the forkbomb

- Init, shell, fork

×

