CS 238P
Operating Systems
Discussion 9

Today’s agenda

* Creating time system call

What Is system call

Call of a kernel level function

Done by interrupts or sysenter (newer hardware)
Linux uses int 0x80, xv6 uses int 0x40

Stack is separate from user program

Way more expensive than a normal call

What Is system call

 Each syscall is associated with some number

* |f you call a syscall from userspace the call looks like that (syscall MY_SYSCALL with number
0x1):

// saving registers on stack

.globl MY _SYSCALL; \
MY SYSCALL: \
movl Ox1, %eax; \
int Ox40; \

ret

Implementing new syscall

1. Add new system call number in syscall.h

2.

3.

Declare your syscall using extern int sys_ CALLNAME(void); in syscall.c

Link syscall number with function in syscalls.c array syscalls

. Register your call in userspace in user.h

. Regqister syscall in usys.c

Implement your system call in one of .c files (for example sysproc.c)

How to get arguments

Get integer:
int argint(int n, int *1ip)
n is argument position

Ip Is location where to store argument

Example (get first argument of syscall and store it in pid variable):
int pid;
if(argint(0, &pid) < 0)

return -1;

How to get arguments

Get pointer:
int argptr(int n, char **pp, int size)
n is argument position

pp is location where to store argument

size is size of the array in bytes

Example (get second argument of syscall and store it in arr variable):

struct stat *st;

if(argptr(l, (void*)&st, sizeof(*st)) < 0)

return -1;

How to get arguments

Get string:
int argstr(int n, char **pp)
n is argument position

pp Is location where to store argument

Example (get second argument of syscall and store it in str variable):
char *old;
if(argstr(l, &old) < 0)

return -1;

How to return data back?

* Return code: just return int from syscall

 For more complex data - store them in the passed argument

Cool, | implemented my syscall
but how to test it?

* Create a user program which calls it

 Create a file with your program (for example mytestprogram.c)
e Add your program into UPROGS in Makefile
 Add your program into EXTRA in Makefile

e Rebuild Qemu

