
CS 238P
Operating Systems

Discussion 9

Today’s agenda

• Creating time system call

What is system call

• Call of a kernel level function

• Done by interrupts or sysenter (newer hardware)

• Linux uses int 0x80, xv6 uses int 0x40

• Stack is separate from user program

• Way more expensive than a normal call

What is system call
• Each syscall is associated with some number

• If you call a syscall from userspace the call looks like that (syscall MY_SYSCALL with number
0x1):

// saving registers on stack

…

 .globl MY_SYSCALL; \

 MY_SYSCALL: \

 movl 0x1, %eax; \

 int 0x40; \

 ret

Implementing new syscall
1. Add new system call number in syscall.h

2. Declare your syscall using extern int sys_CALLNAME(void); in syscall.c

3. Link syscall number with function in syscalls.c array syscalls

4. Register your call in userspace in user.h

5. Register syscall in usys.c

6. Implement your system call in one of .c files (for example sysproc.c)

How to get arguments
Get integer:

int argint(int n, int *ip)

 n is argument position

 ip is location where to store argument

Example (get first argument of syscall and store it in pid variable):

 int pid;

 if(argint(0, &pid) < 0)

 return -1;

How to get arguments
Get pointer:

int argptr(int n, char **pp, int size)

n is argument position

pp is location where to store argument

size is size of the array in bytes

Example (get second argument of syscall and store it in arr variable):

 struct stat *st;

 if(argptr(1, (void*)&st, sizeof(*st)) < 0)

 return -1;

How to get arguments
Get string:

int argstr(int n, char **pp)

n is argument position

pp is location where to store argument

Example (get second argument of syscall and store it in str variable):

 char *old;

 if(argstr(1, &old) < 0)

 return -1;

How to return data back?

• Return code: just return int from syscall

• For more complex data - store them in the passed argument

Cool, I implemented my syscall
but how to test it?

• Create a user program which calls it

• Create a file with your program (for example mytestprogram.c)

• Add your program into UPROGS in Makefile

• Add your program into EXTRA in Makefile

• Rebuild Qemu

