

250P: Computer Systems
Architecture

Lecture 4: Basics of pipelining

Anton Burtsev
October, 2019

2

View from 5,000 Feet

Source: H&P textbook

3

Latches and Clocks in a Single-Cycle Design

PC
Instr
Mem

Reg
File

ALU Data
Memory

Addr

 The entire instruction executes in a single cycle
 Green blocks are latches
 At the rising edge, a new PC is recorded
 At the rising edge, the result of the previous cycle is recorded
 At the falling edge, the address of LW/SW is recorded so
 we can access the data memory in the 2nd half of the cycle

4

Multi-Stage Circuit

● Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
 multiple stages, each separated by a latch

PC
Instr
Mem

ALU Data
Memory

L2
Reg
File

L3 L4

Reg
File

L5

5

Building a Car

Time

6

Building a Car

Start and finish a job before moving to the next

Time

Jobs

Unpipelined

7

The Assembly Line

A

Time

Jobs

Pipelined

B C

A B C

A B C

A B C

Break the job into smaller stages

8

Performance Improvements?

 Does it take longer to finish each individual job?

 Does it take shorter to finish a series of jobs?

 What assumptions were made while answering these questions?

Is a 10-stage pipeline better than a 5-stage pipeline?

Quantitative Effects

● As a result of pipelining:
● Time in ns per instruction goes up
● Each instruction takes more cycles to execute
● But… average CPI remains roughly the same
● Clock speed goes up
● Total execution time goes down, resulting in lower average

time per instruction
● Under ideal conditions, speedup

= ratio of elapsed times between successive instruction completions

= number of pipeline stages = increase in clock speed

10

Clocks and Latches

Stage 1 Stage 2

11

Clocks and Latches

Stage 1 Stage 2L

Clk

L

12

Some Equations

• Unpipelined: time to execute one instruction = T + Tovh

• For an N-stage pipeline, time per stage = T/N + Tovh

• Total time per instruction = N (T/N + Tovh) = T + N Tovh

• Clock cycle time = T/N + Tovh

• Clock speed = 1 / (T/N + Tovh)
• Ideal speedup = (T + Tovh) / (T/N + Tovh)
• Cycles to complete one instruction = N
• Average CPI (cycles per instr) = 1

13

A 5-Stage Pipeline

Source: H&P textbook

14

A 5-Stage Pipeline

 Use the PC to access the I-cache and increment PC by 4

15

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

16

RISC/CISC Loads/Stores

17

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

18

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

19

A 5-Stage Pipeline

Write result of ALU computation or load into register file

Thank you!

21

AM vs. GM

• GM of IPCs = 1 / GM of CPIs

• AM of IPCs represents thruput for a workload where each
 program runs sequentially for 1 cycle each; but high-IPC
 programs contribute more to the AM

• GM of IPCs does not represent run-time for any real
 workload (what does it mean to multiply instructions?); but
 every program’s IPC contributes equally to the final measure

22

Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to
 percentage relative to the baseline
 = (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70
 seconds on my new laptop

 What is the speedup?
 What is the percentage increase in performance?
 What is the reduction in execution time?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

