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Static vs Dynamic Scheduling

• Arguments against dynamic scheduling:
 requires complex structures to identify independent
    instructions (scoreboards, issue queue)

 high power consumption
 low clock speed
 high design and verification effort

 the compiler can “easily” compute instruction latencies
    and dependences – complex software is always
    preferred to complex hardware (?)
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ILP

• Instruction-level parallelism: overlap among instructions:
  pipelining or multiple instruction execution

• What determines the degree of ILP?
 dependences: property of the program
 hazards: property of the pipeline
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Loop Scheduling

• The compiler’s job is to minimize stalls

• Focus on loops: account for most cycles, relatively easy
  to analyze and optimize
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Assumptions

• Load: 2-cycles   (1 cycle stall for consumer)
• FP ALU: 4-cycles (3 cycle stall for consumer; 2 cycle stall
                                 if the consumer is a store)
• One branch delay slot
• Int ALU: 1-cycle (no stall for consumer, 1 cycle stall if the
                               consumer is a branch)

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall
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Loop Example

for (i=1000; i>0; i--)
    x[i] = x[i] + s;

Loop:     L.D         F0, 0(R1)          ; F0 = array element
              ADD.D    F4, F0, F2        ; add scalar
              S.D         F4, 0(R1)          ; store result
              DADDUI  R1, R1,# -8      ; decrement address pointer
              BNE        R1, R2, Loop    ; branch if R1 != R2
              NOP

Source code

Assembly code
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Loop Example

for (i=1000; i>0; i--)
    x[i] = x[i] + s;

Loop:     L.D         F0, 0(R1)          ; F0 = array element
              ADD.D    F4, F0, F2        ; add scalar
              S.D         F4, 0(R1)          ; store result
              DADDUI  R1, R1,# -8      ; decrement address pointer
              BNE        R1, R2, Loop    ; branch if R1 != R2
              NOP

Source code

Assembly code

Loop:     L.D         F0, 0(R1)          ; F0 = array element
              stall
              ADD.D    F4, F0, F2        ; add scalar
              stall
              stall
              S.D         F4, 0(R1)          ; store result
              DADDUI  R1, R1,# -8      ; decrement address pointer
              stall
              BNE        R1, R2, Loop    ; branch if R1 != R2
              stall

10-cycle
schedule

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall
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Smart Schedule

• By re-ordering instructions, it takes 6 cycles per iteration instead of 10
• We were able to violate an anti-dependence easily because an
  immediate was involved
• Loop overhead (instrs that do book-keeping for the loop): 2
  Actual work (the ld, add.d, and s.d): 3 instrs
  Can we somehow get execution time to be 3 cycles per iteration?

Loop:     L.D         F0, 0(R1)     
              stall
              ADD.D    F4, F0, F2   
              stall
              stall
              S.D         F4, 0(R1)     
              DADDUI  R1, R1,# -8 
              stall
              BNE        R1, R2, Loop
              stall

Loop:     L.D         F0, 0(R1)     
              DADDUI  R1, R1,# -8
              ADD.D    F4, F0, F2   
              stall
              BNE        R1, R2, Loop
              S.D         F4, 8(R1)     

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall
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Loop Unrolling

Loop:     L.D         F0, 0(R1) 
              ADD.D    F4, F0, F2   
              S.D         F4, 0(R1)
              L.D         F6, -8(R1)
              ADD.D    F8, F6, F2
              S.D         F8, -8(R1)
              L.D         F10,-16(R1)
              ADD.D    F12, F10, F2
              S.D         F12, -16(R1)
              L.D          F14, -24(R1)
              ADD.D    F16, F14, F2
              S.D          F16, -24(R1)
              DADDUI  R1, R1, #-32
              BNE        R1,R2, Loop

• Loop overhead: 2 instrs; Work: 12 instrs
• How long will the above schedule take to complete?

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall
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Scheduled and Unrolled Loop

Loop:     L.D         F0, 0(R1) 
              L.D         F6, -8(R1)
              L.D         F10,-16(R1)
              L.D          F14, -24(R1)
              ADD.D    F4, F0, F2  
              ADD.D    F8, F6, F2 
              ADD.D    F12, F10, F2
              ADD.D    F16, F14, F2
              S.D         F4, 0(R1)
              S.D         F8, -8(R1)
              DADDUI  R1, R1, # -32
              S.D         F12, 16(R1)
              BNE        R1,R2, Loop
              S.D         F16, 8(R1)            

• Execution time: 14 cycles or 3.5 cycles per original iteration

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall
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Loop Unrolling

• Increases program size

• Requires more registers

• To unroll an n-iteration loop by degree k, we will need (n/k) 
  iterations of the larger loop, followed by (n mod k) iterations
  of the original loop
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Automating Loop Unrolling

• Determine the dependences across iterations: in the
  example, we knew that loads and stores in different iterations
  did not conflict and could be re-ordered

• Determine if unrolling will help – possible only if iterations
  are independent

• Determine address offsets for different loads/stores

• Dependency analysis to schedule code without introducing
  hazards; eliminate name dependences by using additional
  registers
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Superscalar Pipelines

                 Integer pipeline                      FP pipeline

      Handles L.D, S.D, ADDUI, BNE       Handles ADD.D

• What is the schedule with an unroll degree of 4?
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Superscalar Pipelines

                 Integer pipeline                  FP pipeline
Loop:        L.D         F0,0(R1)
                 L.D         F6,-8(R1)
                 L.D         F10,-16(R1)      ADD.D   F4,F0,F2
                 L.D         F14,-24(R1)      ADD.D   F8,F6,F2
                 L.D         F18,-32(R1)      ADD.D   F12,F10,F2
                 S.D         F4,0(R1)           ADD.D   F16,F14,F2
                 S.D         F8,-8(R1)          ADD.D   F20,F18,F2
                 S.D         F12,-16(R1)
                 DADDUI  R1,R1,# -40
                 S.D         F16,16(R1)
                 BNE        R1,R2,Loop
                 S.D          F20,8(R1)

• Need unroll by degree 5 to eliminate stalls
• The compiler may specify instructions that can be issued as one packet
• The compiler may specify a fixed number of instructions in each packet:
  Very Large Instruction Word (VLIW)
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Software Pipeline?!

L.D ADD.D S.D

DADDUI BNE

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D ADD.D

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

…

…

Loop:     L.D         F0, 0(R1)       
              ADD.D    F4, F0, F2     
              S.D         F4, 0(R1)       
              DADDUI  R1, R1,# -8  
              BNE        R1, R2, Loop 
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Software Pipeline

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D

Original iter  1

Original iter  2

Original iter  3

Original iter  4

New iter  1

New iter  2

New iter  3

New iter  4
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Software Pipelining

Loop:     L.D         F0, 0(R1)       
              ADD.D    F4, F0, F2     
              S.D         F4, 0(R1)       
              DADDUI  R1, R1,# -8  
              BNE        R1, R2, Loop 

Loop:     S.D         F4, 16(R1)       
              ADD.D    F4, F0, F2     
              L.D          F0, 0(R1)       
              DADDUI  R1, R1,# -8  
              BNE        R1, R2, Loop 

• Advantages: achieves nearly the same effect as loop unrolling, but
  without the code expansion – an unrolled loop may have inefficiencies
  at the start and end of each iteration, while a sw-pipelined loop is
  almost always in steady state – a sw-pipelined loop can also be unrolled
  to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more
  registers
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Predication

• A branch within a loop can be problematic to schedule

• Control dependences are a problem because of the need
  to re-fetch on a mispredict

• For short loop bodies, control dependences can be
  converted to data dependences by using 
  predicated/conditional instructions
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Predicated or Conditional Instructions

if (R1 == 0) 
   R2 = R2 + R4
else 
   R6 = R3 + R5
   R4 = R2 + R3

R7 = !R1 
R2 = R2 + R4   (predicated on R7)
R6 = R3 + R5   (predicated on R1)
R4 = R8 + R3   (predicated on R1) 
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Predicated or Conditional Instructions

• The instruction has an additional operand that determines
  whether the instr completes or gets converted into a no-op

• Example: lwc  R1, 0(R2), R3    (load-word-conditional)
  will load the word at address (R2) into R1 if R3 is non-zero;
  if R3 is zero, the instruction becomes a no-op

• Replaces a control dependence with a data dependence
  (branches disappear) ; may need register copies for the
  condition or for values used by both directions

if (R1 == 0) 
   R2 = R2 + R4
else 
   R6 = R3 + R5
   R4 = R2 + R3

R7 = !R1 ;  
R2 = R2 + R4   (predicated on R7)
R6 = R3 + R5   (predicated on R1)
R4 = R8 + R3   (predicated on R1) 



  

Thank you!
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Complications

• Each instruction has one more input operand – more
  register ports/bypassing

• If the branch condition is not known, the instruction stalls
  (remember, these are in-order processors)

• Some implementations allow the instruction to continue
  without the branch condition and squash/complete later in
  the pipeline – wasted work

• Increases register pressure, activity on functional units

• Does not help if the br-condition takes a while to evaluate
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Support for Speculation

• In general, when we re-order instructions, register renaming
  can ensure we do not violate register data dependences

• However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

          st
          br

ld
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Detecting Exceptions

• Some exceptions require that the program be terminated
  (memory protection violation), while other exceptions
  require execution to resume (page faults)

• For a speculative instruction, in the latter case, servicing 
  the exception only implies potential performance loss

• In the former case, you want to defer servicing the
  exception until you are sure the instruction is not speculative

• Note that a speculative instruction needs a special opcode
  to indicate that it is speculative
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Program-Terminate Exceptions

• When a speculative instruction experiences an exception,
  instead of servicing it, it writes a special NotAThing value
  (NAT) in the destination register

• If a non-speculative instruction reads a NAT, it flags the
  exception and the program terminates (it may not be
  desirable that the error is caused by an array access, but
  the segfault happens two procedures later)

• Alternatively, an instruction (the sentinel) in the speculative
  instruction’s original location checks the register value and
  initiates recovery
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Memory Dependence Detection
 (Advanced Load Address Table)

 In general, when we re-order instructions, register renaming
 can ensure we do not violate register data dependences

 However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

          st
          br

ld
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Memory Dependence Detection

• If a load is moved before a preceding store, we must
  ensure that the store writes to a non-conflicting address,
  else, the load has to re-execute

• When the speculative load issues, it stores its address in
  a table (Advanced Load Address Table in the IA-64)

• If a store finds its address in the ALAT, it indicates that a
  violation occurred for that address

• A special instruction (the sentinel) in the load’s original
  location checks to see if the address had a violation and 
  re-executes the load if necessary
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