

250P: Computer Systems
Architecture

Lecture 7: Static Instruction Level
Parallelism

Anton Burtsev
April, 2020

2

Static vs Dynamic Scheduling

• Arguments against dynamic scheduling:
 requires complex structures to identify independent
 instructions (scoreboards, issue queue)

 high power consumption
 low clock speed
 high design and verification effort

 the compiler can “easily” compute instruction latencies
 and dependences – complex software is always
 preferred to complex hardware (?)

3

ILP

• Instruction-level parallelism: overlap among instructions:
 pipelining or multiple instruction execution

• What determines the degree of ILP?
 dependences: property of the program
 hazards: property of the pipeline

4

Loop Scheduling

• The compiler’s job is to minimize stalls

• Focus on loops: account for most cycles, relatively easy
 to analyze and optimize

5

Assumptions

• Load: 2-cycles (1 cycle stall for consumer)
• FP ALU: 4-cycles (3 cycle stall for consumer; 2 cycle stall
 if the consumer is a store)
• One branch delay slot
• Int ALU: 1-cycle (no stall for consumer, 1 cycle stall if the
 consumer is a branch)

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

7

Loop Example

for (i=1000; i>0; i--)
 x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element
 ADD.D F4, F0, F2 ; add scalar
 S.D F4, 0(R1) ; store result
 DADDUI R1, R1,# -8 ; decrement address pointer
 BNE R1, R2, Loop ; branch if R1 != R2
 NOP

Source code

Assembly code

8

Loop Example

for (i=1000; i>0; i--)
 x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element
 ADD.D F4, F0, F2 ; add scalar
 S.D F4, 0(R1) ; store result
 DADDUI R1, R1,# -8 ; decrement address pointer
 BNE R1, R2, Loop ; branch if R1 != R2
 NOP

Source code

Assembly code

Loop: L.D F0, 0(R1) ; F0 = array element
 stall
 ADD.D F4, F0, F2 ; add scalar
 stall
 stall
 S.D F4, 0(R1) ; store result
 DADDUI R1, R1,# -8 ; decrement address pointer
 stall
 BNE R1, R2, Loop ; branch if R1 != R2
 stall

10-cycle
schedule

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

9

Smart Schedule

• By re-ordering instructions, it takes 6 cycles per iteration instead of 10
• We were able to violate an anti-dependence easily because an
 immediate was involved
• Loop overhead (instrs that do book-keeping for the loop): 2
 Actual work (the ld, add.d, and s.d): 3 instrs
 Can we somehow get execution time to be 3 cycles per iteration?

Loop: L.D F0, 0(R1)
 stall
 ADD.D F4, F0, F2
 stall
 stall
 S.D F4, 0(R1)
 DADDUI R1, R1,# -8
 stall
 BNE R1, R2, Loop
 stall

Loop: L.D F0, 0(R1)
 DADDUI R1, R1,# -8
 ADD.D F4, F0, F2
 stall
 BNE R1, R2, Loop
 S.D F4, 8(R1)

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

10

Loop Unrolling

Loop: L.D F0, 0(R1)
 ADD.D F4, F0, F2
 S.D F4, 0(R1)
 L.D F6, -8(R1)
 ADD.D F8, F6, F2
 S.D F8, -8(R1)
 L.D F10,-16(R1)
 ADD.D F12, F10, F2
 S.D F12, -16(R1)
 L.D F14, -24(R1)
 ADD.D F16, F14, F2
 S.D F16, -24(R1)
 DADDUI R1, R1, #-32
 BNE R1,R2, Loop

• Loop overhead: 2 instrs; Work: 12 instrs
• How long will the above schedule take to complete?

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

11

Scheduled and Unrolled Loop

Loop: L.D F0, 0(R1)
 L.D F6, -8(R1)
 L.D F10,-16(R1)
 L.D F14, -24(R1)
 ADD.D F4, F0, F2
 ADD.D F8, F6, F2
 ADD.D F12, F10, F2
 ADD.D F16, F14, F2
 S.D F4, 0(R1)
 S.D F8, -8(R1)
 DADDUI R1, R1, # -32
 S.D F12, 16(R1)
 BNE R1,R2, Loop
 S.D F16, 8(R1)

• Execution time: 14 cycles or 3.5 cycles per original iteration

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

12

Loop Unrolling

• Increases program size

• Requires more registers

• To unroll an n-iteration loop by degree k, we will need (n/k)
 iterations of the larger loop, followed by (n mod k) iterations
 of the original loop

13

Automating Loop Unrolling

• Determine the dependences across iterations: in the
 example, we knew that loads and stores in different iterations
 did not conflict and could be re-ordered

• Determine if unrolling will help – possible only if iterations
 are independent

• Determine address offsets for different loads/stores

• Dependency analysis to schedule code without introducing
 hazards; eliminate name dependences by using additional
 registers

14

Superscalar Pipelines

 Integer pipeline FP pipeline

 Handles L.D, S.D, ADDUI, BNE Handles ADD.D

• What is the schedule with an unroll degree of 4?

15

Superscalar Pipelines

 Integer pipeline FP pipeline
Loop: L.D F0,0(R1)
 L.D F6,-8(R1)
 L.D F10,-16(R1) ADD.D F4,F0,F2
 L.D F14,-24(R1) ADD.D F8,F6,F2
 L.D F18,-32(R1) ADD.D F12,F10,F2
 S.D F4,0(R1) ADD.D F16,F14,F2
 S.D F8,-8(R1) ADD.D F20,F18,F2
 S.D F12,-16(R1)
 DADDUI R1,R1,# -40
 S.D F16,16(R1)
 BNE R1,R2,Loop
 S.D F20,8(R1)

• Need unroll by degree 5 to eliminate stalls
• The compiler may specify instructions that can be issued as one packet
• The compiler may specify a fixed number of instructions in each packet:
 Very Large Instruction Word (VLIW)

16

Software Pipeline?!

L.D ADD.D S.D

DADDUI BNE

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D ADD.D

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

…

…

Loop: L.D F0, 0(R1)
 ADD.D F4, F0, F2
 S.D F4, 0(R1)
 DADDUI R1, R1,# -8
 BNE R1, R2, Loop

17

Software Pipeline

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D

Original iter 1

Original iter 2

Original iter 3

Original iter 4

New iter 1

New iter 2

New iter 3

New iter 4

18

Software Pipelining

Loop: L.D F0, 0(R1)
 ADD.D F4, F0, F2
 S.D F4, 0(R1)
 DADDUI R1, R1,# -8
 BNE R1, R2, Loop

Loop: S.D F4, 16(R1)
 ADD.D F4, F0, F2
 L.D F0, 0(R1)
 DADDUI R1, R1,# -8
 BNE R1, R2, Loop

• Advantages: achieves nearly the same effect as loop unrolling, but
 without the code expansion – an unrolled loop may have inefficiencies
 at the start and end of each iteration, while a sw-pipelined loop is
 almost always in steady state – a sw-pipelined loop can also be unrolled
 to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more
 registers

19

Predication

• A branch within a loop can be problematic to schedule

• Control dependences are a problem because of the need
 to re-fetch on a mispredict

• For short loop bodies, control dependences can be
 converted to data dependences by using
 predicated/conditional instructions

20

Predicated or Conditional Instructions

if (R1 == 0)
 R2 = R2 + R4
else
 R6 = R3 + R5
 R4 = R2 + R3

R7 = !R1
R2 = R2 + R4 (predicated on R7)
R6 = R3 + R5 (predicated on R1)
R4 = R8 + R3 (predicated on R1)

21

Predicated or Conditional Instructions

• The instruction has an additional operand that determines
 whether the instr completes or gets converted into a no-op

• Example: lwc R1, 0(R2), R3 (load-word-conditional)
 will load the word at address (R2) into R1 if R3 is non-zero;
 if R3 is zero, the instruction becomes a no-op

• Replaces a control dependence with a data dependence
 (branches disappear) ; may need register copies for the
 condition or for values used by both directions

if (R1 == 0)
 R2 = R2 + R4
else
 R6 = R3 + R5
 R4 = R2 + R3

R7 = !R1 ;
R2 = R2 + R4 (predicated on R7)
R6 = R3 + R5 (predicated on R1)
R4 = R8 + R3 (predicated on R1)

Thank you!

23

Complications

• Each instruction has one more input operand – more
 register ports/bypassing

• If the branch condition is not known, the instruction stalls
 (remember, these are in-order processors)

• Some implementations allow the instruction to continue
 without the branch condition and squash/complete later in
 the pipeline – wasted work

• Increases register pressure, activity on functional units

• Does not help if the br-condition takes a while to evaluate

24

Support for Speculation

• In general, when we re-order instructions, register renaming
 can ensure we do not violate register data dependences

• However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

 st
 br

ld

25

Detecting Exceptions

• Some exceptions require that the program be terminated
 (memory protection violation), while other exceptions
 require execution to resume (page faults)

• For a speculative instruction, in the latter case, servicing
 the exception only implies potential performance loss

• In the former case, you want to defer servicing the
 exception until you are sure the instruction is not speculative

• Note that a speculative instruction needs a special opcode
 to indicate that it is speculative

26

Program-Terminate Exceptions

• When a speculative instruction experiences an exception,
 instead of servicing it, it writes a special NotAThing value
 (NAT) in the destination register

• If a non-speculative instruction reads a NAT, it flags the
 exception and the program terminates (it may not be
 desirable that the error is caused by an array access, but
 the segfault happens two procedures later)

• Alternatively, an instruction (the sentinel) in the speculative
 instruction’s original location checks the register value and
 initiates recovery

27

Memory Dependence Detection
 (Advanced Load Address Table)

 In general, when we re-order instructions, register renaming
 can ensure we do not violate register data dependences

 However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

 st
 br

ld

28

Memory Dependence Detection

• If a load is moved before a preceding store, we must
 ensure that the store writes to a non-conflicting address,
 else, the load has to re-execute

• When the speculative load issues, it stores its address in
 a table (Advanced Load Address Table in the IA-64)

• If a store finds its address in the ALAT, it indicates that a
 violation occurred for that address

• A special instruction (the sentinel) in the load’s original
 location checks to see if the address had a violation and
 re-executes the load if necessary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

