1. Basics of CPU instruction set
(a) (5 points) Write a simple assembly program that computes factorial of N, i.e., the product
of all positive integers less than or equal to N. You can use any instruciton set you know
(e.g., x86 or RISC), you don’t have to be precise (the sketch of the code will work)

sem Sec =) JEX = fac v EBRX =1 | EX=N
Aor (=1 1% 0y) toop: muL €8
Lac =-€=«_+‘(,\ [Wwe_ erX

1:2-3-4-%- N S Lo

2. Basics of digital design

(a) (5 points) Design a logical circuit that adds two two-bit numbers. Make sure that an
additional output signals the overflow.

AR
(&)

q:—.
CcC b'——— b

‘oo =D

Y Con t%@

by :@ ‘ |
Cour Sum=Cin.A.B+

B.Cin.A+
A.Cin.B+
Truth Table for the above operations: A .B.Cin
| A B Cin Sum Cout Qn
0 0 0 0 0 A
0 0 1 1 0 .
0 1 0 1 0 23 ‘
0 1 1 0 1 N
1 0 0 1 0 ﬁ:_tx 1"——
1 0 1 0 1 -
1 1 0 0 1 J
1 1 1 1 il /

3. Pipelines and stalls v'ov .

(a) (5 points) Consider a 32-bit in-order pifeﬁne with full bypassing that has the following
stages:

- P
Fetch Decode/Regread ALU® Writeback 0.
ntALU Datamem Datamem © Writeback
N p—)

P.0 ,C /OFPALUl FPALU2 Writeback
After decode, Int-adds go threugh the stages la@ed "Int ALU” a@” Trite % ﬁg&t’ggas\
go through the stages labeldd "{RfALU™, ”"Datamem”, ”Datamer”, and “Writeback™,
while FP-adds go through the\stages labeled "FPALU1”, "FP. 27 and ” Writeback”.
How many stall cycles are introduc
(remember, the processor implements full bypassing)?

(i) Int-add, providing the address for a load/store,

ng pairs of successive instructions

p.o°

D Rk yee Wl

I2 Teld Dfew lo\m\-A’L\) .
Ro.C A_DD TL'L Eg , RL{

kL D> BN, 8(22\
A 2
[[e= (= =]
SER

wo —s—\c&Qg

(ii) Load, providing the data for an FP-add

2 ot <

— o

]:‘ Fetch Decode/Regread IntALU Writeback N v
IntALU Datamem Datamem Writeback
FPALU1 FPALU2 Writebac ”w \7.0'

iz Feit Dlee. & O | TeFRL AW
Fe b D/ & WO Datemon Dot

(iii) Load, providing the data for a store,
A - cycle

(iv) FP-add, followed by dependent FP-add.

1 - oy cle

4. Branch delay slot

Comsider a 7-stage in-order processor, where the instruction is fetched in the first stage, and _é o / -
the branch outcome is known after 3 stages. Estimate the CPI (cycles per instruction) of the °

processor under the following scenarios (assume that all stalls in the processor are branch-

related and branches account for 20% of all executed instructions, assume that all branches are * — WO - \9‘4\)\)&5
taken 60% of the time and not-taken 40% of the time). L’O s

.—7(&) (5 points) On every branch, fetch is stalled until the branch outcome is known.

] &)~ 3~ -T2

11 — 1, -2 T
oo — 1, v |l =2
L o \ Y

13 .o
Iy

3 (+4q

—
—
breuad — B AN
IS @ (brend) =5
16 - I c\'\- \Z

13 >

(b) (5 points) Every branch is predicted not-taken and the mis-fetched instructions are squashed
if the branch is taken.

11
1~

12
1s 3 B

Lo

16

o~

1=

B ®

16
\aV‘aMC\n: O <06 = 1=

CD\(- 1+ 0N\ Lr2_ =\, A
Pl = 4~ P-2 \
\ \2 \oo + \2»2 24

S (60 o0 \oo |24

(¢) (5 points) The processor has two delay slots and the two instructions following the branch

are always fetched and executed, and You are able to move three instructions before the

branch into the delay slot. T~——— —

B niN
Yo Ve CP)\
= =

———
- —

|
|)

- - —

5. Loop unrolling

Consider a basic in-order pipeline with bypassing (one instruction in each pipeline stage in any
cycle). The pipeline has been extended to handle FP add and FP mult. Assume the following
delays between dependent instructions:

o Load feeding any instruction: 3 stall cycles «— L.D F1, 0(R2) // Get yl[il
L.D F2, 0(R3) // Get z[i]

DADDUI R2, R2, #-8 // Decrement R2
e FP MULT feeding any_instruction (except stores): 7 stall cycles DADDUI R3, R3, #-8 // Qecrement R3

e FP ALU feeding store] 3 stall cycles _DADDUI R4, R4, #-8 // Decrement R4

e FP ALU feeding any instruction (except stores): 4 stall cycles

e Int add feeding any instruction: O stall cycles ADD.D F3, F2, F1 // Add the two numBers
e A conditional branch has 1 delay slot (an instruction is fetched in the cycle after the < TAL L /
branch without knowing the outcome of the branch and is executed to completion) STALC
Below is the source code and default assembly code for a loop. BNE RQ, Rl, LOOp // Check if we've reached the end of the 100p

Source Code:

for (t=:2|1000; [i;O; i_[_:)| { [\/ \ j C S.D F3-, & (R4) // Store the result into x[i]

x[i] = y[i]l + z[il; ‘
} Z
Assembly Code: [“[‘ L D ‘: \) o Cz Z‘) // Y
Loop: _- L\ D FL\) —& (KZ\ Y |
L.D F1, 0(R2) // Get y[i] ==
LD F2, 0(RS) 7/ Get o1i] L.D FL) © (23)

ADD.D F3, F2, F1 // Add the two numbers

S.D FSJO(RA) // Store the result into x[il] . D FS_) —2 CR 3)

DADDUI R2, R2, #-8 // Decrement R2

DADDUI R3, R3, #-8 // Decrement R3 MBD
DADDUI R4, R4, #-8 // Decrement R4 .
BNE R2, R1, Loop // Check if we’ve reached the end of the loop D%D
NOP -~
| N | ADD v F3)\ T, B2
(a) (5 points) Show the schedule (what instruction issues in what cycle) for the default code! —— /

ADD.D F6,\FY, B
DeDD

STALN
: S.D ®3
S. O B4

hDP

LD FL,0(RYD) 1y | LD F\,oRYD
L0 B4, -8Ry o L.D Fr,o(R3)
LD F’—'L,D(Q'i)

LD pq,—g(lz\

. D FS_,"RCR3) LD FS‘,—?CK3)
b%l; HADD

e DR, R, By
DD v R\ FI, B2 *Dbbgib
A}\;\)P.D 6 \F4, B ADD.D T6, F4,er

SeAD ADD

S T3 S D F3

S. PK e

P - S. D>
Ing

ro P

