Lecture 3: Basics of pipelining

Anton Burtsev
January, 2019
Building a Car

Time
Building a Car

Unpipelined

Start and finish a job before moving to the next

Jobs

Time
The Assembly Line

Pipelined

Break the job into smaller stages

Jobs

Time

A B C
A B C
A B C
A B C
A B C
Clocks and Latches

Stage 1 → Stage 2
Clocks and Latches

Stage 1 → L → Stage 2

Clk
Some Equations

• Unpipelined: time to execute one instruction = T + T_{ovh}
• For an N-stage pipeline, time per stage = T/N + T_{ovh}
• Total time per instruction = N (T/N + T_{ovh}) = T + N T_{ovh}
• Clock cycle time = T/N + T_{ovh}
• Clock speed = 1 / (T/N + T_{ovh})
• Ideal speedup = (T + T_{ovh}) / (T/N + T_{ovh})
• Cycles to complete one instruction = N
• Average CPI (cycles per instr) = 1
A 5-Stage Pipeline

Source: H&P textbook
A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4
A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume branches take 2 cyc (there is enough work that branches can easily take more)
A 5-Stage Pipeline

ALU computation, effective address computation for load/store
A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles
A 5-Stage Pipeline

Write result of ALU computation or load into register file
RISC/CISC Loads/Stores
Thank you!
AM vs. GM

- GM of IPCs = 1 / GM of CPIs

- AM of IPCs represents throughput for a workload where each program runs sequentially for 1 cycle each; but high-IPC programs contribute more to the AM

- GM of IPCs does not represent run-time for any real workload (what does it mean to multiply instructions?); but every program’s IPC contributes equally to the final measure
Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to percentage relative to the baseline
 = (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70 seconds on my new laptop
 ▪ What is the speedup?
 ▪ What is the percentage increase in performance?
 ▪ What is the reduction in execution time?